Orthogonal random vectors and the Hurwitz-Radon-Eckmann theorem.
Georgian Mathematical Journal, Tome 1 (1994) no. 1, pp. 99-113.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Keywords: maximal number of unitary antisymmetric operators, Hurwitz-Radon-Eckmann formula, conditions for almost sure orthogonality of two random vectors, covariance operator
@article{GMJ_1994__1_1_47046,
     author = {Vakhania, N.},
     title = {Orthogonal random vectors and the {Hurwitz-Radon-Eckmann} theorem.},
     journal = {Georgian Mathematical Journal},
     pages = {99--113},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1994},
     zbl = {0804.60004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/GMJ_1994__1_1_47046/}
}
TY  - JOUR
AU  - Vakhania, N.
TI  - Orthogonal random vectors and the Hurwitz-Radon-Eckmann theorem.
JO  - Georgian Mathematical Journal
PY  - 1994
SP  - 99
EP  - 113
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GMJ_1994__1_1_47046/
LA  - en
ID  - GMJ_1994__1_1_47046
ER  - 
%0 Journal Article
%A Vakhania, N.
%T Orthogonal random vectors and the Hurwitz-Radon-Eckmann theorem.
%J Georgian Mathematical Journal
%D 1994
%P 99-113
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GMJ_1994__1_1_47046/
%G en
%F GMJ_1994__1_1_47046
Vakhania, N. Orthogonal random vectors and the Hurwitz-Radon-Eckmann theorem.. Georgian Mathematical Journal, Tome 1 (1994) no. 1, pp. 99-113. http://geodesic.mathdoc.fr/item/GMJ_1994__1_1_47046/