Berger's Isoperimetric Problem and Minimal Immersions of Surfaces.
Geometric and functional analysis, Tome 6 (1996) no. 1, pp. 877-898.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : isoperimetric inequality, Laplace operator, surface of genus one, Berger's problem
@article{GFA_1996__6_1_58250,
     author = {N. Nadirashvili},
     title = {Berger's {Isoperimetric} {Problem} and {Minimal} {Immersions} of {Surfaces.}},
     journal = {Geometric and functional analysis},
     pages = {877--898},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1996},
     zbl = {0868.58079},
     url = {http://geodesic.mathdoc.fr/item/GFA_1996__6_1_58250/}
}
TY  - JOUR
AU  - N. Nadirashvili
TI  - Berger's Isoperimetric Problem and Minimal Immersions of Surfaces.
JO  - Geometric and functional analysis
PY  - 1996
SP  - 877
EP  - 898
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GFA_1996__6_1_58250/
ID  - GFA_1996__6_1_58250
ER  - 
%0 Journal Article
%A N. Nadirashvili
%T Berger's Isoperimetric Problem and Minimal Immersions of Surfaces.
%J Geometric and functional analysis
%D 1996
%P 877-898
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GFA_1996__6_1_58250/
%F GFA_1996__6_1_58250
N. Nadirashvili. Berger's Isoperimetric Problem and Minimal Immersions of Surfaces.. Geometric and functional analysis, Tome 6 (1996) no. 1, pp. 877-898. http://geodesic.mathdoc.fr/item/GFA_1996__6_1_58250/