Riemann Surfaces with Shortest Geodesic of Maximal Length.
Geometric and functional analysis, Tome 3 (1993) no. 6, pp. 564-631.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Teichmüller space, systole, maximal surfaces
@article{GFA_1993__3_6_58149,
     author = {P. Schmutz},
     title = {Riemann {Surfaces} with {Shortest} {Geodesic} of {Maximal} {Length.}},
     journal = {Geometric and functional analysis},
     pages = {564--631},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1993},
     zbl = {0810.53034},
     url = {http://geodesic.mathdoc.fr/item/GFA_1993__3_6_58149/}
}
TY  - JOUR
AU  - P. Schmutz
TI  - Riemann Surfaces with Shortest Geodesic of Maximal Length.
JO  - Geometric and functional analysis
PY  - 1993
SP  - 564
EP  - 631
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GFA_1993__3_6_58149/
ID  - GFA_1993__3_6_58149
ER  - 
%0 Journal Article
%A P. Schmutz
%T Riemann Surfaces with Shortest Geodesic of Maximal Length.
%J Geometric and functional analysis
%D 1993
%P 564-631
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GFA_1993__3_6_58149/
%F GFA_1993__3_6_58149
P. Schmutz. Riemann Surfaces with Shortest Geodesic of Maximal Length.. Geometric and functional analysis, Tome 3 (1993) no. 6, pp. 564-631. http://geodesic.mathdoc.fr/item/GFA_1993__3_6_58149/