Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-norm of Curvature Bounded.
Geometric and functional analysis, Tome 1 (1991) no. 2, pp. 231-252.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Gromov-Hausdorff distance, orbifold, degeneration of the metric
@article{GFA_1991__1_2_58122,
     author = {M.T. Anderson and J. Cheeger},
     title = {Diffeomorphism {Finiteness} for {Manifolds} with {Ricci} {Curvature} and {Ln/2-norm} of {Curvature} {Bounded.}},
     journal = {Geometric and functional analysis},
     pages = {231--252},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1991},
     zbl = {0764.53026},
     url = {http://geodesic.mathdoc.fr/item/GFA_1991__1_2_58122/}
}
TY  - JOUR
AU  - M.T. Anderson
AU  - J. Cheeger
TI  - Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-norm of Curvature Bounded.
JO  - Geometric and functional analysis
PY  - 1991
SP  - 231
EP  - 252
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/GFA_1991__1_2_58122/
ID  - GFA_1991__1_2_58122
ER  - 
%0 Journal Article
%A M.T. Anderson
%A J. Cheeger
%T Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-norm of Curvature Bounded.
%J Geometric and functional analysis
%D 1991
%P 231-252
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/GFA_1991__1_2_58122/
%F GFA_1991__1_2_58122
M.T. Anderson; J. Cheeger. Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-norm of Curvature Bounded.. Geometric and functional analysis, Tome 1 (1991) no. 2, pp. 231-252. http://geodesic.mathdoc.fr/item/GFA_1991__1_2_58122/