Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2021_16_2_a2, author = {S. A. Rogonov and I. S. Soldatenko}, title = {Analysis of the folded normal distribution of a random variable}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {111--122}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a2/} }
TY - JOUR AU - S. A. Rogonov AU - I. S. Soldatenko TI - Analysis of the folded normal distribution of a random variable JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2021 SP - 111 EP - 122 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a2/ LA - ru ID - FSSC_2021_16_2_a2 ER -
S. A. Rogonov; I. S. Soldatenko. Analysis of the folded normal distribution of a random variable. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 2, pp. 111-122. http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a2/
[1] Yazenin A., Soldatenko I., “On the Problem of Possibilistic-Probabilistic Optimization with Constraints on Possibility/Probability”, Advances in Intelligent Systems and Computing, Lecture Notes in Computer Science, 11291, eds. Giove S., Masulli F., Fuller R., Springer, Cham, 2019, 43–54 | DOI
[2] Yazenin A. V., Soldatenko I. S., “The problem of possibility-probability optimization with constraints on the possibility/necessity-probability and probability-possibility/necessity”, Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte. Sbornik nauchnykh trudov X-j Mezhdunarodnoj nauchno-tekhnicheskoj konferentsii, IMMV-2021, V 2-kh tomakh (Kolomna, 17-20 maya 2021 g.), v. 1, Universum, Smolensk, 2021, 271–283 (in Russian)
[3] Soldatenko I. S., Yazenin A. V., “On the order of principles of removing uncertainty in the problems of probabilistic programming and the evolutionary method of their solution”, Actual problems of applied mathematics, computer science and mechanics, APPMIM-2021, Proceedings of the International Scientific Conference, Voronezh State University, Voronezh, 2021 (in Russian)
[4] SimPy Library of symbolic mathematical calculations (in Russian)
[5] D'agostino R. B., Belanger A. J., D'agostino Jr.R. B., “A suggestion for using powerful and informative tests of normality”, The American Statistician, 44:4 (1990), 316–321 | DOI
[6] Anscombe F. J., Glynn W. J., “Distribution of the kurtosis statistic b2 for normal samples”, Biometrika, 70:1 (1983), 227–234 | DOI | MR | Zbl
[7] D'agostino R. B., “An omnibus test of normality for moderate and large size samples”, Biometrika, 58:2 (1971), 341–348 | DOI | MR
[8] D'agostino R., Pearson E. S., “Tests for departure from normality. Empirical results for the distributions of $b^2$ and $\sqrt{b1}$”, Biometrika, 60:3 (1973), 613–622 | DOI
[9] Leone F. C., Nelson L. S., Nottingham R. B., “The Folded Normal Distribution”, Technometrics, 3:4 (1961), 543–550 | DOI | MR
[10] Nelson L. S., “The Folded Normal Distribution”, Journal of Quality Technology, 12:4 (1980), 236–238 | DOI
[11] Elandt R. C., “The Folded Normal Distribution: Two Methods of Estimating Parameters from Moments”, Technometrics, 3:4 (1961), 551–562 | DOI | MR | Zbl