Analysis of the folded normal distribution of a random variable
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 2, pp. 111-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analysis of the behavior of random variables after various transformations can be used in the practical solution of many non-trivial problems. In particular, solutions that cannot be expressed purely analytically, from the point of view of practical applicability, are able to give results with accuracy sufficient for real calculations, taking the inexpressible discrepancy of the analytical solution far beyond the actual error. In this paper, the behavior of the modulus of a normally distributed random variable is investigated and it is found out under what conditions it is possible to neglect the operation of taking an absolute value and approximate the modulus of a random variable with a similar probability distribution.
Keywords: stochastic optimization problem, absolute value of a random variable, folded normal distribution, skewness and kurtosis coefficients, normality test, SciPy library.
@article{FSSC_2021_16_2_a2,
     author = {S. A. Rogonov and I. S. Soldatenko},
     title = {Analysis of the folded normal distribution of a random variable},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a2/}
}
TY  - JOUR
AU  - S. A. Rogonov
AU  - I. S. Soldatenko
TI  - Analysis of the folded normal distribution of a random variable
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2021
SP  - 111
EP  - 122
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a2/
LA  - ru
ID  - FSSC_2021_16_2_a2
ER  - 
%0 Journal Article
%A S. A. Rogonov
%A I. S. Soldatenko
%T Analysis of the folded normal distribution of a random variable
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2021
%P 111-122
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a2/
%G ru
%F FSSC_2021_16_2_a2
S. A. Rogonov; I. S. Soldatenko. Analysis of the folded normal distribution of a random variable. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 16 (2021) no. 2, pp. 111-122. http://geodesic.mathdoc.fr/item/FSSC_2021_16_2_a2/

[1] Yazenin A., Soldatenko I., “On the Problem of Possibilistic-Probabilistic Optimization with Constraints on Possibility/Probability”, Advances in Intelligent Systems and Computing, Lecture Notes in Computer Science, 11291, eds. Giove S., Masulli F., Fuller R., Springer, Cham, 2019, 43–54 | DOI

[2] Yazenin A. V., Soldatenko I. S., “The problem of possibility-probability optimization with constraints on the possibility/necessity-probability and probability-possibility/necessity”, Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte. Sbornik nauchnykh trudov X-j Mezhdunarodnoj nauchno-tekhnicheskoj konferentsii, IMMV-2021, V 2-kh tomakh (Kolomna, 17-20 maya 2021 g.), v. 1, Universum, Smolensk, 2021, 271–283 (in Russian)

[3] Soldatenko I. S., Yazenin A. V., “On the order of principles of removing uncertainty in the problems of probabilistic programming and the evolutionary method of their solution”, Actual problems of applied mathematics, computer science and mechanics, APPMIM-2021, Proceedings of the International Scientific Conference, Voronezh State University, Voronezh, 2021 (in Russian)

[4] SimPy Library of symbolic mathematical calculations (in Russian)

[5] D'agostino R. B., Belanger A. J., D'agostino Jr.R. B., “A suggestion for using powerful and informative tests of normality”, The American Statistician, 44:4 (1990), 316–321 | DOI

[6] Anscombe F. J., Glynn W. J., “Distribution of the kurtosis statistic b2 for normal samples”, Biometrika, 70:1 (1983), 227–234 | DOI | MR | Zbl

[7] D'agostino R. B., “An omnibus test of normality for moderate and large size samples”, Biometrika, 58:2 (1971), 341–348 | DOI | MR

[8] D'agostino R., Pearson E. S., “Tests for departure from normality. Empirical results for the distributions of $b^2$ and $\sqrt{b1}$”, Biometrika, 60:3 (1973), 613–622 | DOI

[9] Leone F. C., Nelson L. S., Nottingham R. B., “The Folded Normal Distribution”, Technometrics, 3:4 (1961), 543–550 | DOI | MR

[10] Nelson L. S., “The Folded Normal Distribution”, Journal of Quality Technology, 12:4 (1980), 236–238 | DOI

[11] Elandt R. C., “The Folded Normal Distribution: Two Methods of Estimating Parameters from Moments”, Technometrics, 3:4 (1961), 551–562 | DOI | MR | Zbl