On one problem of portfolio analysis under soft constraints
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 15 (2020) no. 1, pp. 64-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of a minimal risk portfolio under conditions of hybrid uncertainty of the possibility-probability type based on the principle of expected possibility has been developed and studied. The peculiarity of this model is that the "softness" of the restriction on the level of expected return is modeled by replacing a clear restriction with a possibilistic binary relation. The model example shows how the softness of the constraint affects a set of quasi-effective estimates of an investment portfolio.
Keywords: minimal risk portfolio, hybrid uncertainty, fuzzy random variable, possibility, expected possibility, possibilistic relation, soft restriction on possibility.
@article{FSSC_2020_15_1_a3,
     author = {I. S. Soldatenko and A. V. Yazenin},
     title = {On one problem of portfolio analysis under soft constraints},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {64--76},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a3/}
}
TY  - JOUR
AU  - I. S. Soldatenko
AU  - A. V. Yazenin
TI  - On one problem of portfolio analysis under soft constraints
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2020
SP  - 64
EP  - 76
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a3/
LA  - ru
ID  - FSSC_2020_15_1_a3
ER  - 
%0 Journal Article
%A I. S. Soldatenko
%A A. V. Yazenin
%T On one problem of portfolio analysis under soft constraints
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2020
%P 64-76
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a3/
%G ru
%F FSSC_2020_15_1_a3
I. S. Soldatenko; A. V. Yazenin. On one problem of portfolio analysis under soft constraints. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 15 (2020) no. 1, pp. 64-76. http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a3/

[1] Yazenin A. V., “Optimization with Fuzzy Random Data and its Application in Financial Analysis”, Proceedings of International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, FSSCEF 2004 (Saint-Petersburg, Russia June 17-20, 2004), v. 2, 2004, 16–32

[2] Yazenin A. V., “Possibilistic–Probabilistic Models and Methods of Portfolio Optimization”, Perception-based Data Mining and Decision Making in Economics and Finance, Studies in Computational Intelligence, 36, eds. I. Batyrshin, J. Kacprzyk, L. Sheremetov, L.A. Zadeh, Springer, Berlin–Heidelberg, 2007, 241–259 | DOI | Zbl

[3] Yazenin A., Soldatenko I., “A portfolio of minimum risk in a hybrid uncertainty of a possibilistic-probabilistic type: comparative study”, Advances in Fuzzy Logic and Technology 2017, EUSFLAT 2017, IWIFSGN 2017, Advances in Intelligent Systems and Computing, 643, eds. Kacprzyk J., Szmidt E., Zadrożny S., Atanassov K., Krawczak M., 2018, 551–563 | DOI

[4] Yazenin A., Soldatenko I., “On the Problem of Possibilistic-Probabilistic Optimization with Constraints on Possibility/Probability”, Advances in Intelligent Systems and Computing, Lecture Notes in Computer Science, 11291, eds. Giove S., Masulli F., Fuller R., Springer, Cham, 2019, 43–54 | DOI

[5] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[6] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables and their applications”, Fuzzy Sets and Systems, 120:3 (2001), 487–497 | DOI | MR | Zbl

[7] Dubois D., Prade H., Theorie des Possibilites, Application a la Representation des Connaissances en Informatique, Masson, Paris, 1988 | MR | MR

[8] Yazenin A. V., “On the problem of possibilistic optimization”, Fuzzy Sets and Systems, 81 (1996), 133–140 | DOI | MR | Zbl

[9] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Set Theory and Applications, eds. M.M. Gupta, R.K. Ragade, R.R. Yager, North-Holland, Amsterdam, 1979, 165–180 | MR

[10] Nguyen H. T., Walker E. A., A first cours in fuzzy logic, CRC Press, 1997 | MR

[11] Yazenin A., Wagenknecht M., Possibilistic Optimization. A Measure-Based Approach, Brandenburgische Technische Universitat, Cotbus, Germany, 1996, 133 pp.

[12] Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980 | MR | Zbl

[13] Dubois D., Prade H., “Fuzzy numbers: an overview”, Analysis of Fuzzy Information, v. 2, ed. J. Bezdek, CRC-Press, Boca Raton, 1988, 3–39 | MR

[14] Gordeev R. N., Yazenin A. V., “A method for solving a problem of possibilistic programming”, Journal of Computer and Systems Sciences International, 45:3 (2006), 442–449 | DOI | MR | Zbl

[15] Markowitz H., “Portfolio Selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI | MR