Comparative analysis of methods for estimating parameters of one-dimensional probability distributions
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 1, pp. 56-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a comparative analysis of the methods for estimating the parameters of one-dimensional probability distributions, proposed by Wang Xizhao and Ha Minghu and by Dug Hun Hong for strongest $t$-norm.
Keywords: fuzzy distribution, parameter estimation.
@article{FSSC_2019_14_1_a3,
     author = {I. V. Sorokina and S. V. Sorokin},
     title = {Comparative analysis of methods for estimating parameters of one-dimensional probability distributions},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a3/}
}
TY  - JOUR
AU  - I. V. Sorokina
AU  - S. V. Sorokin
TI  - Comparative analysis of methods for estimating parameters of one-dimensional probability distributions
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2019
SP  - 56
EP  - 63
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a3/
LA  - ru
ID  - FSSC_2019_14_1_a3
ER  - 
%0 Journal Article
%A I. V. Sorokina
%A S. V. Sorokin
%T Comparative analysis of methods for estimating parameters of one-dimensional probability distributions
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2019
%P 56-63
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a3/
%G ru
%F FSSC_2019_14_1_a3
I. V. Sorokina; S. V. Sorokin. Comparative analysis of methods for estimating parameters of one-dimensional probability distributions. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 1, pp. 56-63. http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a3/

[1] Xizhao W., Minghu H., “Note on maxmin $\mu/E$ estimation”, Fuzzy Sets and Systems, 94 (1998), 71–75 | DOI | MR | Zbl

[2] Cai K. -Y., “Parameter estimations of normal fuzzy variables”, Fuzzy Sets and Systems, 5 (1993), 179–185 | MR

[3] Hong D. H., “Parameter estimations of mutually t-related fuzzy variables”, Fuzzy Sets and Systems, 123:1 (2001), 63–71 | DOI | MR | Zbl

[4] Gershenfeld N.A., Weigend A. S., The Future of Time Series; CU-CS-670-93, Computer Science Technical Reports. Paper 641, 1993 (accessed at 14.02.2019) http://scholar.colorado.edu/csci_techreports/641

[5] Näther W., “On possibilistic inference”, Fuzzy Sets and Systems, 36 (1990), 327–337 | DOI | MR | Zbl

[6] Xizhao W., Minghu H., “Fuzzy linear regression analysis”, Fuzzy Sets and Systems, 52 (1992), 179–188 | DOI | MR

[7] Zhenyuan W., Shoumei L., “Fuzzy linear regression analysis of fuzzy-valued variables”, Fuzzy Sets and Systems, 36 (1990), 125–136 | DOI | MR | Zbl

[8] Sorokina I. V., Sorokin S. V., “On parameters estimation for multidimensional possibility distributions”, Fuzzy Systems and Soft Computing, 8:2 (2013), 101–113 (in Russian) | Zbl

[9] Sorokina I., Sorokin S., Yazenin A., “Parameter Estimation of Multidimensional Possibility Distributions”, International Journal of Mathematical, Computational, Natural and Physical Engineering, 9:2 (2015), 71–74

[10] Sorokina I. V., Sorokin S. V., “Otsenka parametrov mnogomernykh vozmozhnostnykh raspredelenij pri zadannom urovne riske”, Fuzzy Systems and Soft Computing, 10:2 (2015), 181–193 (in Russian) | Zbl

[11] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1:2 (1978), 97–110 | DOI | MR | Zbl

[12] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., M., 2016, 144 pp. (in Russian)

[13] Rao M. B., Rashed A., “Some comments on fuzzy variables”, Fuzzy Sets and Systems, 6 (1981), 285–292 (in Russian) | DOI | MR | Zbl

[14] Beliakov G., Pradera A., Calvo T., Aggregation Functions: A Guide for Practitioners, Studies in Fuzziness and Soft Computing, 221, Springer-Verlag, Berlin–Heidelberg, 2007 | DOI | MR