Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2018_13_1_a5, author = {Yu. E. Egorova}, title = {Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {81--93}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/} }
TY - JOUR AU - Yu. E. Egorova TI - Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2018 SP - 81 EP - 93 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/ LA - ru ID - FSSC_2018_13_1_a5 ER -
%0 Journal Article %A Yu. E. Egorova %T Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables %J Nečetkie sistemy i mâgkie vyčisleniâ %D 2018 %P 81-93 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/ %G ru %F FSSC_2018_13_1_a5
Yu. E. Egorova. Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/
[1] Yazenin A. V., Egorova Yu. E., “On solution methods for tasks of possibilistic-probabilistic optimization”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2013, no. 4 (31), 85-103 (in Russian)
[2] Egorova Yu. E., Yazenin A. V., “Parameter identification for possibilistic distribution of expected values of fuzzy random variables $T_W$-sums”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2014, no. 2, 81-93 (in Russian)
[3] Egorova Yu. E., Yazenin A. V., “Stochastic quasi-gradient method for solving possibilistic-probabilistic optimization task of one class”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2014, no. 4, 57-70 (in Russian)
[4] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1978, no. 1, 97-110 | DOI
[5] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Sets Theory, ed. M. M. Gupta, North-Holland Publishing Company, Amsterdam, 1979, 165–168
[6] Yazenin A., Wagenknecht M., Possibilistic Optimization, Brandenburgische Technische Universitat, Cottbus, Germany, 1996
[7] Khokhlov M. Yu., Yazenin A. V., “Calculation of the numerical characteristics of fuzzy random variables”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2003, no. 1, 39-43 (in Russian)
[8] Dubois D., Prade H., Theory of Possibilities, Radio i svyaz' Publ., Moscow, 1990 (in Russian)
[9] Nguyen H. T., Walker E. A., A First Course in Fuzzy Logic, CRC Press, Boca Raton, 1997
[10] Hong D. H., “Parameter estimations of mutually T-related fuzzy variables”, Fuzzy Sets and Systems, 123:1 (2001) | DOI
[11] Yazenin A. V., Basic Concepts of the Theory of Possibilities: a Mathematical Apparatus for Decision-Making under Conditions of Hybrid Uncertainty, Fizmatlit Publ., Moscow, 2016 (in Russian)
[12] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka Publ., Moscow, 1976 (in Russian)
[13] Egorova Y. E., Yazenin A. V., “The problem of possibilistic-probabilistic optimization”, Journal of Computer and Systems Sciences International, 56:4 (2017), 652-667 | DOI | DOI
[14] Yazenin A. V., “Possibilistic-probabilistic models and methods of portfolio optimization”, Studies in Computational Intelligence, 36 (2007), 241-259
[15] Egorova Yu. E., Yazenin A. V., “A method for minimum risk portfolio optimization under hybrid uncertainty”, International Journal of Modern Physics: Conference Series, 973 (2018), 012033 | DOI