Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies properties of the parameters of the possibility distribution of the expected value of a linear function of fuzzy random variables in the case when fuzzy parameters are related by the weakset (drastic) $t$-norm. Criteria of existence and continuity of coefficients of fuzzines are presented.
Keywords: fuzzy random variable, the expected value of fuzzy random variable, the weakest $t$-norm, weighted sum of fuzzy random variables, possibilistic-probabilistic optimization.
@article{FSSC_2018_13_1_a5,
     author = {Yu. E. Egorova},
     title = {Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/}
}
TY  - JOUR
AU  - Yu. E. Egorova
TI  - Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2018
SP  - 81
EP  - 93
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/
LA  - ru
ID  - FSSC_2018_13_1_a5
ER  - 
%0 Journal Article
%A Yu. E. Egorova
%T Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2018
%P 81-93
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/
%G ru
%F FSSC_2018_13_1_a5
Yu. E. Egorova. Properties of the possibility distribution parameters of the expected value of a weighted sum of fuzzy random variables. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a5/

[1] Yazenin A. V., Egorova Yu. E., “On solution methods for tasks of possibilistic-probabilistic optimization”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2013, no. 4 (31), 85-103 (in Russian)

[2] Egorova Yu. E., Yazenin A. V., “Parameter identification for possibilistic distribution of expected values of fuzzy random variables $T_W$-sums”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2014, no. 2, 81-93 (in Russian)

[3] Egorova Yu. E., Yazenin A. V., “Stochastic quasi-gradient method for solving possibilistic-probabilistic optimization task of one class”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2014, no. 4, 57-70 (in Russian)

[4] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1978, no. 1, 97-110 | DOI

[5] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Sets Theory, ed. M. M. Gupta, North-Holland Publishing Company, Amsterdam, 1979, 165–168

[6] Yazenin A., Wagenknecht M., Possibilistic Optimization, Brandenburgische Technische Universitat, Cottbus, Germany, 1996

[7] Khokhlov M. Yu., Yazenin A. V., “Calculation of the numerical characteristics of fuzzy random variables”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2003, no. 1, 39-43 (in Russian)

[8] Dubois D., Prade H., Theory of Possibilities, Radio i svyaz' Publ., Moscow, 1990 (in Russian)

[9] Nguyen H. T., Walker E. A., A First Course in Fuzzy Logic, CRC Press, Boca Raton, 1997

[10] Hong D. H., “Parameter estimations of mutually T-related fuzzy variables”, Fuzzy Sets and Systems, 123:1 (2001) | DOI

[11] Yazenin A. V., Basic Concepts of the Theory of Possibilities: a Mathematical Apparatus for Decision-Making under Conditions of Hybrid Uncertainty, Fizmatlit Publ., Moscow, 2016 (in Russian)

[12] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka Publ., Moscow, 1976 (in Russian)

[13] Egorova Y. E., Yazenin A. V., “The problem of possibilistic-probabilistic optimization”, Journal of Computer and Systems Sciences International, 56:4 (2017), 652-667 | DOI | DOI

[14] Yazenin A. V., “Possibilistic-probabilistic models and methods of portfolio optimization”, Studies in Computational Intelligence, 36 (2007), 241-259

[15] Egorova Yu. E., Yazenin A. V., “A method for minimum risk portfolio optimization under hybrid uncertainty”, International Journal of Modern Physics: Conference Series, 973 (2018), 012033 | DOI