Local and global probabilistic-logic inference in algebraic bayesian networks: a matrix-vector description and issues of sensitivity
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 12 (2017) no. 2, pp. 133-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms and equations for the probabilistic-logic inference of algebraic Bayesian networks are presented in the paper. All types of global consistency are considered and a matrix-vector formalization of consistency conditions is proposed. The paper summarizes results in local posterior inference for different kinds of knowledge patterns. Moreover in this paper we conduct a sensitivity analysis of first problem of a posterior inference for the knowledge pattern built over the ideal of disjuncts and formulate a linear programming problem to find the described estimates.
Keywords: probabilistic graphical models, algebraic Bayesian networks, probabilistic-logic inference, sensitivity analysis, consistency check.
@article{FSSC_2017_12_2_a4,
     author = {A. A. Zolotin and E. A. Malchevskaia and N. A. Kharitonov and A. L. Tulupyev},
     title = {Local and global probabilistic-logic inference in algebraic bayesian networks: a matrix-vector description and issues of sensitivity},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {133--150},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2017_12_2_a4/}
}
TY  - JOUR
AU  - A. A. Zolotin
AU  - E. A. Malchevskaia
AU  - N. A. Kharitonov
AU  - A. L. Tulupyev
TI  - Local and global probabilistic-logic inference in algebraic bayesian networks: a matrix-vector description and issues of sensitivity
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2017
SP  - 133
EP  - 150
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2017_12_2_a4/
LA  - ru
ID  - FSSC_2017_12_2_a4
ER  - 
%0 Journal Article
%A A. A. Zolotin
%A E. A. Malchevskaia
%A N. A. Kharitonov
%A A. L. Tulupyev
%T Local and global probabilistic-logic inference in algebraic bayesian networks: a matrix-vector description and issues of sensitivity
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2017
%P 133-150
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2017_12_2_a4/
%G ru
%F FSSC_2017_12_2_a4
A. A. Zolotin; E. A. Malchevskaia; N. A. Kharitonov; A. L. Tulupyev. Local and global probabilistic-logic inference in algebraic bayesian networks: a matrix-vector description and issues of sensitivity. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 12 (2017) no. 2, pp. 133-150. http://geodesic.mathdoc.fr/item/FSSC_2017_12_2_a4/

[1] Kim G. Y., Lee S. M., Seong P. H., “A methodology for a quantitative assessment of safety culture in NPPs based on Bayesian networks”, Annals of Nuclear Energy, 102 (2017), 23-36 | DOI

[2] Gharahbagheri H., Imtiaz S. A., Khan F., “Root cause diagnosis of process fault using KPCA and Bayesian network”, Industrial Engineering Chemistry Research, 56:8 (2017), 2054-2070 | DOI

[3] Xing F., Chen J., Zhao B., Jiang J., Tang A., Chen Y., “Real role of $\beta$-blockers in regression of left ventricular mass in hypertension patients: Bayesian network meta-analysis”, Medicine, 96:10 (2017), e6290 | DOI

[4] Kourou K., Papaloukas C., Fotiadis D. I., “Integration of pathway knowledge and dynamic Bayesian networks for the prediction of oral cancer recurrence”, IEEE Journal of Biomedical and Health Informatics, 21:2 (2017), 320-327 | DOI

[5] Mal'chevskaya E. A., Zolotin A. A., Tulup'ev A. L., “Algorithms of a posteriori output in algebraic Bayesian networks: refinement of a matrix-vector representation”, Fuzzy Technologies in the Industry (FTI-2017): Proceedings of the First All-Russian Scientific and Practical Conference (Ulyanovsk, 2017), 376-388 (in Russian)

[6] Kharitonov N. A., Zolotin A. A., Tulup'ev A. L., “Global consistency in algebraic Bayesian networks: matrix-vector representation of consistency conditions”, Fuzzy Technologies in the Industry (FTI-2017): Proceedings of the First All-Russian Scientific and Practical Conference (Ulyanovsk, 2017), 178-186 (in Russian)

[7] Tulup'ev A. L., Stolyarov D. M., Mentyukov M. V., “Representation of the local and global structure of an algebraic Bayesian network in Java applications”, SPIIRAS Proceedings, 2007, no. 5, 71-99 (in Russian)

[8] Tulup'ev A. L., Nikolenko S. I., Sirotkin A. V., Bayesian Networks: The Logical-Probabilistic Approach, Nauka Publ., St. Petersburg, 2006, 607 pp. (in Russian)

[9] Tulup'ev A. L., Sirotkin A. V., Nikolenko S. I., Bayesian Networks of Trust: a Logical-Probabilistic Derivation in Acyclic Directed Graphs, St. Petersburg University Publ., St. Petersburg, 2009, 400 pp. (in Russian)

[10] Levenets D. G., Zotov M. A., Romanov A. V., Tulupyev A. L., Zolotin A. A., Filchenkov A. A., “Decremental and incremental reshaping of algebraic Bayesian networks global structures”, Proceedings of the First International Scientific Conference «Intelligent Information Technologies for Industry», IITI’16 (Sochi, 2016), 57-67

[11] Mal'chevskaya E. A., Zolotin A. A., “Logical-probabilistic conclusion in ABS: architecture and examples of the use of the program complex in C# language”, Hybrid and Synergetic Intellectual Systems: Proceedings of the III All-Russian Pospelov Conference with International Participation, 2016, 181-187 (in Russian)

[12] Tulupyev A. L., Sirotkin A. V., Zolotin A. A., “Matrix equations in a posteriori inference of truth estimates in algebraic Bayesian networks”, Vestnik St. Petersburg University. Mathematics, 48:3 (2015), 168-174 | DOI | MR | Zbl

[13] Zolotin A. A., Tulup'ev A. L., Sirotkin A. V., “Matrix-vector algorithms for local a posteriori output in algebraic Bayesian networks over quantum propositions”, Scientific and Technical Herald of Information Technologies, Mechanics and Optics, 15:4 (2015), 676-684 (in Russian)

[14] Zolotin A. A., Malchevskaia E. A., “Matrix-vector algorithms of local posteriori inference in algebraic Bayesian networks on ideal of disjuncts”, Proceedings of XIX International Conference on Soft Computing and Measurements, SCM'2016 (Saint-Petersburg, 2016), 31-34

[15] Tulup'ev A. L., Bayesian Networks: Local Logical-Probabilistic Derivation, Manual, St. Petersburg University Publ., St. Petersburg; Anatoliya Publ., St. Petersburg, 2007, 80 pp. (in Russian)

[16] Dalir F., Motlagh M. S., Ashrafi K., “Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios”, Global Journal of Environmental Science and Management, 3:1 (2017), 75-88 | DOI