Finding the maximum flow of minimum cost in fuzzy dynamic network with a given vitality degree
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 11 (2016) no. 2, pp. 83-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to solving the problem of finding a minimal cost flow in fuzzy transport network with a given vitality degree. A special feature of the transport network is the dependence of all the fuzzy network settings on the flow time of departure. The transport network is seen as a dynamic, since it depends on the parameters of time and may be different at different times. Attributed to the edges of the network degree of vitality is the ability of facilities to withstand weather conditions, accidents and preserve the objects themselves, the capacity in case of danger. The article presents the main points of the algorithm, a formal algorithm for solving this problem, which is accompanied by a numerical example. These models can be applied to real networks of road, rail and air traffic roads for solving optimization problems.
Keywords: fuzzy dynamic network, flow of minimum cost, fuzzy vitality degree.
@article{FSSC_2016_11_2_a0,
     author = {A. V. Bozhenyuk and E. M. Gerasimenko},
     title = {Finding the maximum flow of minimum cost in fuzzy dynamic network with a given vitality degree},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2016_11_2_a0/}
}
TY  - JOUR
AU  - A. V. Bozhenyuk
AU  - E. M. Gerasimenko
TI  - Finding the maximum flow of minimum cost in fuzzy dynamic network with a given vitality degree
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2016
SP  - 83
EP  - 94
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2016_11_2_a0/
LA  - ru
ID  - FSSC_2016_11_2_a0
ER  - 
%0 Journal Article
%A A. V. Bozhenyuk
%A E. M. Gerasimenko
%T Finding the maximum flow of minimum cost in fuzzy dynamic network with a given vitality degree
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2016
%P 83-94
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2016_11_2_a0/
%G ru
%F FSSC_2016_11_2_a0
A. V. Bozhenyuk; E. M. Gerasimenko. Finding the maximum flow of minimum cost in fuzzy dynamic network with a given vitality degree. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 11 (2016) no. 2, pp. 83-94. http://geodesic.mathdoc.fr/item/FSSC_2016_11_2_a0/

[1] Goldberg A. V., Tardos E., Tarjan R. E., “Network Flow Algorithms”, Paths, Flows and VLSI-Design, eds. B. Korte, L. Lovasz, H. J. Proemel, A. Schrijver, Springer Verlag, 1990, 101–164 | MR

[2] Aronson J. E., “A survey of dynamic network flows”, Annals of Operations Research, 20 (1989), 1–66 | DOI | MR | Zbl

[3] Bozhenyuk A., Gerasimenko E., Rozenberg I., Perfilieva I., “Method for the minimum cost maximum flow determining in fuzzy dynamic network with nonzero flow bounds”, Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (Gijón, Spain, 30 June – 3 July 2015), v. 89, 385–392

[4] Lovetskii S., Melamed I., “Static network flows (review)”, Automation and Remote Control, 48:11 (1987), 1417–1434 | MR | MR

[5] Bozhenyuk A., Gerasimenko E., “Flows finding in networks in fuzzy conditions”, Supply Chain Management Under Fuzzines, Studies in Fuzziness and Soft Computing, 313, eds. Cengiz Kahraman, Basar Öztaysi, Springer-Verlag, Berlin–Heidelberg, 2014, 269–291 | DOI

[6] Bozhenyuk A., Rozenberg I., Starostina T., “A method of increase of vitality degree of fuzzy graph”, Proceedings of 13th Zittau Fuzzy Colloquium (September 13-15 2006), Hochschule Zittau/Goerlitz, Zittau, 235–240

[7] Bozheniuk V., Bozhenyuk A., Belyakov S., “Optimum allocation of centers in fuzzy transportation networks with the largest vitality degree”, Proceedings of the 2015 Conference of the International Fuzzy System Association and the European Society for Fuzzy Logic and Technology, 1006–1011

[8] Frank H., Frisch I. T., Communication, Transmission, and Transportation Networks, Addison Wesley, 1971 | MR | Zbl

[9] Tomizawa N., “On some techniques useful for solution of transportation network problems”, Networks, 1 (1971), 173–194 | DOI | MR | Zbl

[10] Chabini I., Abou-Zeid M., “The minimum cost flow problem in capacitated dynamic networks”, Annual Meeting of the Transportation Research Board, Washington D.C., 2003, 1–30