Parameter estimation of multidimensional possibilistic distributions for a given risk level
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 2, pp. 181-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the work of Dug Hun Hong, we present a solution to parameters estimation problem of fuzzy distributions in m-dimensional case and show that this estimator is consistent, sufficient and maximum likelihood. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample.
Keywords: fuzzy distribution, parameter estimation.
@article{FSSC_2015_10_2_a2,
     author = {I. V. Sorokina and S. V. Sorokin},
     title = {Parameter estimation of multidimensional possibilistic distributions for a given risk level},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {181--193},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a2/}
}
TY  - JOUR
AU  - I. V. Sorokina
AU  - S. V. Sorokin
TI  - Parameter estimation of multidimensional possibilistic distributions for a given risk level
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2015
SP  - 181
EP  - 193
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a2/
LA  - ru
ID  - FSSC_2015_10_2_a2
ER  - 
%0 Journal Article
%A I. V. Sorokina
%A S. V. Sorokin
%T Parameter estimation of multidimensional possibilistic distributions for a given risk level
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2015
%P 181-193
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a2/
%G ru
%F FSSC_2015_10_2_a2
I. V. Sorokina; S. V. Sorokin. Parameter estimation of multidimensional possibilistic distributions for a given risk level. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 2, pp. 181-193. http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a2/

[1] Xizhao W., Minghu H., “Note on maxmin $\mu/E$ estimation”, Fuzzy Sets and Systems, 94 (1998), 71–75 | DOI | MR | Zbl

[2] Kai-Yuan C., “Parameter estimations of normal fuzzy variables”, Fuzzy Sets and Systems, 55 (1993), 179–185 | DOI | MR

[3] Hong D. H., “Parameter estimations of mutually T-related fuzzy variables”, Fuzzy Sets and Systems, 123 (2001), 63–71 | DOI | MR | Zbl

[4] Näther W., “On possibilistic inference”, Fuzzy Sets and Systems, 36 (1990), 327–337 | DOI | MR | Zbl

[5] Xizhao W., Minghu H., “Fuzzy linear regression analysis”, Fuzzy Sets and Systems, 52 (1992), 179–188 | DOI

[6] Zhenyuan W., Shoumei L., “Fuzzy linear regression analysis of fuzzy-valued variables”, Fuzzy Sets and Systems, 36 (1990), 125–136 | DOI | MR | Zbl

[7] Sorokina I. V., Sorokin S. V., “K zadache otsenki parametrov mnogomernykh vozmozhnostnykh raspredelenii”, Nechetkie sistemy i myagkie vychisleniya, 8:2 (2013), 101–113 | Zbl

[8] Sorokina I., Sorokin S., Yazenin A., “Parameter estimation of multidimensional possibility distributions”, International Journal of Mathematical, Computational, Natural and Physical Engineering, 9:2 (2015), 71–74

[9] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1 (1978), 97–110 | DOI | MR | Zbl

[10] Yazenin A. V., “On the problem of possibilistic optimization”, Fuzzy Sets and Systems, 81 (1996), 133–140 | DOI | MR | Zbl

[11] Rao M. B., Rashed A., “Some comments on fuzzy variables”, Fuzzy Sets and Systems, 6 (1981), 285–292 | DOI | MR | Zbl

[12] Schröcker H.-P., “Uniqueness results for minimal enclosing ellipsoids”, Computer Aided Geometric Design, 25:9 (2008), 756–762 | DOI | MR | Zbl

[13] Zade L. A., Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii, Mir, M., 1976, 165 pp. | MR

[14] Yazenin A. V., “K zadache maksimizatsii vozmozhnosti dostizheniya nechetkoi tseli”, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 1999, no. 4, 120–123 | MR | Zbl

[15] Takagi T., Sugeno M., “Fuzzy identification of systems and its applications to modeling and control”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-15:1 (1985), 116–132 | DOI

[16] Kosko B., “Fuzzy systems as universal approximators”, IEEE Transactions on Computers, 43:11 (1994), 1329–1333 | DOI | Zbl

[17] Chiu S. L., “Fuzzy model identification based on cluster estimation”, Journal of Intelligent and Fuzzy Systems, 2:3 (1994), 267–278 | DOI