On dessins d'enfants with equal supports
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 189-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a Belyi function $\beta\colon \mathbb{CP}^1\rightarrow \mathbb{CP}^1$ ramified only over the points $-1$, $1$, and $\infty$, a corresponding «dessin d'enfant»$\mathscr{D}_{\beta}$ is defined as the set $\beta^{-1}([-1,1])$ considered as a bi-colored graph on the Riemann sphere whose white and black vertices are points of the sets $\beta^{-1}\{-1\}$ and $\beta^{-1}\{1\}$, correspondingly. Merely the set $\beta^{-1}([-1,1])$ without a graph structure is called the support of $\mathscr{D}_{\beta}$. In this note, we solve the following problem: under what conditions different dessins $\mathscr{D}_{\beta_1}$ and $\mathscr{D}_{\beta_2}$ have equal supports?
@article{FPM_2024_25_2_a9,
     author = {F. B. Pakovich},
     title = {On dessins d'enfants with equal supports},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {189--196},
     year = {2024},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a9/}
}
TY  - JOUR
AU  - F. B. Pakovich
TI  - On dessins d'enfants with equal supports
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 189
EP  - 196
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a9/
LA  - ru
ID  - FPM_2024_25_2_a9
ER  - 
%0 Journal Article
%A F. B. Pakovich
%T On dessins d'enfants with equal supports
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 189-196
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a9/
%G ru
%F FPM_2024_25_2_a9
F. B. Pakovich. On dessins d'enfants with equal supports. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 189-196. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a9/

[1] Kochetkov Yu. Yu., “O geometrii odnogo klassa ploskikh derevev”, Funkts. analiz i ego pril., 33:4 (1999), 78–81 | DOI | MR | Zbl

[2] Kochetkov Yu. Yu., “Geometriya ploskikh derevev”, Fundament. i prikl. matem., 13:6 (2007), 149–158

[3] Orevkov S. Yu., “Neprivodimost lemniskat”, UMN, 73:3 (2018), 177–178 | DOI | MR | Zbl

[4] Bishop C., “True trees are dense”, Invent. Math., 197:2 (2014), 433–452 | DOI | MR | Zbl

[5] Bishop C., Lazebnik K., Hilbert's lemniscate theorem for rational functions, Preprint, 2023

[6] Cartwright M. L., “On the level curves of integral and meromorphic functions”, Proc. London Math. Soc., 43 (1937), 468–474 | MR | Zbl

[7] Ebenfelt P., Khavinson D., Shapiro H. S., “Two-dimensional shapes and lemniscates”, Contemp. Math., 553 (2011), 45–59 | DOI | MR | Zbl

[8] Eremenko A., Hayman W., “On the length of lemniscates”, Michigan Math. J., 46:2 (1999), 409–415 | DOI | MR | Zbl

[9] Girondo E., González-Diez G., Introduction to Compact Riemann Surfaces and Dessins d'Enfants, London Math. Soc. Student Texts, 79, Cambridge Univ. Press, Cambridge, 2012 | MR

[10] Hilbert D., “Über die Entwicklung einer beliebigen analytischen Funktion einer Variablen in eine unendliche nach rationalen Funktionen fortschreitende Reihe”, Nachrichten Gesellschaften Wissenschaften Göttingen, 1997, 63–70

[11] Jensen G., Pommerenke C., “Shabat polynomials and conformal mapping”, Acta Sci. Math. (Szeged), 85:1-2 (2019), 147–170 | DOI | MR | Zbl

[12] Jones G., Wolfart J., Dessins d'Enfants on Riemann Surfaces, Springer Monographs Math., Springer, Cham, 2016 | DOI | MR

[13] Lando S., Zvonkin A., Graphs on Surfaces and Their Applications, Encyclopaedia Math. Sci., 141, Springer, Berlin, 2004 | DOI | MR | Zbl

[14] Orevkov S., Pakovich F., On intersection of lemniscates of rational functions, 2023, arXiv: 2309.04983

[15] Pakovich F., Shparlinski I., “Level curves of rational functions and unimodular points on rational curves”, Proc. Amer. Math. Soc., 148:5 (2020), 1829–1833 | DOI | MR | Zbl

[16] Sharon E., Mumford D., “2D-shape analysis using conformal mapping”, Int. J. Comput. Vis., 70 (2006), 55–75 | DOI | Zbl

[17] Stephenson K., Sundberg C., “Level curves of inner functions”, Proc. London Math. Soc., 51 (1985), 77–94 | DOI | MR | Zbl

[18] Stephenson K., “Analytic functions sharing level curves and tracts”, Ann. Math., 123 (1986), 107–144 | DOI | MR | Zbl

[19] Valiron G., “Sur les courbes de module constant des fonctions entieres”, Compt. Rend. Acad. Sci. Paris, 204 (1937), 402–404 | Zbl

[20] Younsi M., “Shapes, fingerprints and rational lemniscates”, Proc. Amer. Math. Soc., 144:3 (2016), 1087–1093 | DOI | MR | Zbl