A dynamical system in the space of convex quadrangles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 183-188
Cet article a éte moissonné depuis la source Math-Net.Ru
Let us consider a family $F(\alpha,\beta,\gamma,\delta)$ of convex quadrangles in the plane with given angles $\{\alpha,\beta,\gamma,\delta\}$ and with the perimeter $2\pi$. Such a quadrangle $Q\in F(\alpha,\beta,\gamma,\delta)$ can be considered as a point $(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$, where $\{x_1,x_2,x_3,x_4\}$ are lengths of edges. Then to $F$ there corresponds a finite open segment $I\subset\mathbb{R}^4$. A quadrangle in $F$ that corresponds to the midpoint of $I$ is called a balanced quadrangle. Let $M$ be the set of balanced quadrangles. The function $f\colon M\to M$ is defined in the following way: angles of the balanced quadrangle $Q'$, $Q'=f(Q)$, are numerically equal to edges of $Q$. The map $f$ defines a dynamical system in the space of balanced quadrangles. In this work, we study properties of this system.
@article{FPM_2024_25_2_a8,
author = {Yu. Yu. Kochetkov},
title = {A dynamical system in the space of convex quadrangles},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {183--188},
year = {2024},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a8/}
}
Yu. Yu. Kochetkov. A dynamical system in the space of convex quadrangles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 183-188. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a8/
[1] Busjatskaja I., Kochetkov Yu., Dual quadrangles in the plane, 2019, arXiv: 1911.09321
[2] Cantarella J., Needham T., Shonkwiler C., “Random triangles and polygons in the plane”, Amer. Math. Monthly, 126:2 (2019), 113–134 | DOI | MR | Zbl
[3] Kochetkov Yu., Two dynamical systems in the space of triangles, 2021, arXiv: 2101.03734 | Zbl