On $3$-coloring of chains and propellers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 177-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A chain is a tree where two vertices have degree $1$ and all others have degree $2$. A propeller is a tree that has one vertex of degree $3$, three vertices of degree $1$, and all other vertices have degree $2$. A proper propeller is a propeller, where vertices of degree one are at equal distances from the vertex of degree $3$. We study the following problem: how to find the number of $3$-colorings of a chain and a proper propeller in the case where the numbers of vertices of each color are given? In both cases, generating functions are presented.
@article{FPM_2024_25_2_a7,
     author = {Yu. Yu. Kochetkov},
     title = {On $3$-coloring of chains and propellers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {177--181},
     year = {2024},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a7/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - On $3$-coloring of chains and propellers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 177
EP  - 181
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a7/
LA  - ru
ID  - FPM_2024_25_2_a7
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T On $3$-coloring of chains and propellers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 177-181
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a7/
%G ru
%F FPM_2024_25_2_a7
Yu. Yu. Kochetkov. On $3$-coloring of chains and propellers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 177-181. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a7/

[1] Lando S. K., Vvedenie v diskretnuyu matematiku, MTsNMO, M., 2012

[2] Kharari F., Teoriya grafov, URSS, M., 2006