On $3$-coloring of chains and propellers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 177-181
Cet article a éte moissonné depuis la source Math-Net.Ru
A chain is a tree where two vertices have degree $1$ and all others have degree $2$. A propeller is a tree that has one vertex of degree $3$, three vertices of degree $1$, and all other vertices have degree $2$. A proper propeller is a propeller, where vertices of degree one are at equal distances from the vertex of degree $3$. We study the following problem: how to find the number of $3$-colorings of a chain and a proper propeller in the case where the numbers of vertices of each color are given? In both cases, generating functions are presented.
@article{FPM_2024_25_2_a7,
author = {Yu. Yu. Kochetkov},
title = {On $3$-coloring of chains and propellers},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {177--181},
year = {2024},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a7/}
}
Yu. Yu. Kochetkov. On $3$-coloring of chains and propellers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 177-181. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a7/
[1] Lando S. K., Vvedenie v diskretnuyu matematiku, MTsNMO, M., 2012
[2] Kharari F., Teoriya grafov, URSS, M., 2006