Klein's ten “dessins d'enfants” of degree $11$: theme with variations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 103-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We reinterpret ideas in Klein's paper on transformations of degree $11$ from the modern point of view of dessins d'enfants, and extend his results by considering dessins of type $(3,2,p)$ and degree $p$ or $p+1$, where $p$ is prime. In many cases, we determine the passports and monodromy groups of these dessins, and in a few small cases we give drawings which are topologically (or, in certain examples, even geometrically) correct. We use the Bateman–Horn conjecture and extensive computer searches to support the conjecture that there are infinitely many primes of the form $p=(q^n-1)/(q-1)$ for some prime power $q$, in which case infinitely many groups $\mathrm{PSL}_n(q)$ arise as permutation groups and monodromy groups of degree $p$ (an open problem in group theory).
@article{FPM_2024_25_2_a6,
     author = {G. A. Jones and A. K. Zvonkin},
     title = {Klein's ten {\textquotedblleft}dessins d'enfants{\textquotedblright} of degree~$11$: theme with variations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {103--175},
     year = {2024},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a6/}
}
TY  - JOUR
AU  - G. A. Jones
AU  - A. K. Zvonkin
TI  - Klein's ten “dessins d'enfants” of degree $11$: theme with variations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 103
EP  - 175
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a6/
LA  - ru
ID  - FPM_2024_25_2_a6
ER  - 
%0 Journal Article
%A G. A. Jones
%A A. K. Zvonkin
%T Klein's ten “dessins d'enfants” of degree $11$: theme with variations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 103-175
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a6/
%G ru
%F FPM_2024_25_2_a6
G. A. Jones; A. K. Zvonkin. Klein's ten “dessins d'enfants” of degree $11$: theme with variations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 103-175. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a6/

[1] Belyi G. V., “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 267–276 | MR | Zbl

[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972

[3] Gipoteza Bunyakovskogo, http://fr.wikipedia.org/wiki/Conjecture_de_Bouniakovski

[4] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[5] Klein F., Lektsii ob ikosaedre i o reshenii uravnenii pyatoi stepeni, Nauka, M., 1989 | MR

[6] Kokseter G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR

[7] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984

[8] Adrianov N. M., Pakovich F., Zvonkin A. K., Davenport–Zannier Polynomials and Dessins d'Enfants, Math. Surveys Monographs, 249, AMS, Providence, 2020 | DOI | MR

[9] Aletheia-Zomlefer S. L., Fukshansky L., Garcia S. R., “The Bateman–Horn conjecture: heuristics, history, and applications”, Expo. Math., 38 (2020), 430–479, arXiv: 1807.08899v4 [math.NT] | DOI | MR | Zbl

[10] Bateman P. T., Horn R. A., “A heuristic asymptotic formula concerning the distribution of prime numbers”, Math. Comput., 16:79 (1962), 363–367 | DOI | MR | Zbl

[11] Bell G. W., “On the cohomology of the finite special linear groups. I, II”, J. Algebra, 54 (1978), 216–238 ; 239-259 | DOI | MR | Zbl

[12] Berecky Á., “Maximal overgroups of Singer elements in classical groups”, J. Algebra, 234:1 (2000), 187–206 | DOI | MR

[13] Bétréma J., Private communication, 2020

[14] Bouniakowsky V., “Sur les diviseurs numériques invariables des fonctions rationnelles entières”, Mém. Acad. Sci. St. Pétersbourg, $6^{\textup{e}}$ sér, VI, 1857, 305–329 https://books.google.fr/books?hl=fr&id=wXIhAQAAMAAJ&pg=PA305

[15] Burnside W., “On simply transitive groups of prime degree”, Quart. J. Math., 37 (1906), 215–221

[16] Burnside W., Theory of Groups of Finite Order, Dover, New York, 1955 | MR | Zbl

[17] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[18] Cohen H., A Course in Computational Algebraic Number Theory, Springer, Berlin, 1993 | MR | Zbl

[19] Conder M. D. E., “The symmetric genus of the Mathieu groups”, Bull. London Math. Soc., 23 (1991), 445–453 | DOI | MR | Zbl

[20] Conder M. D. E., “Regular maps and hypermaps of Euler characteristic $-1$ to $-200$”, J. Combin. Theory Ser. B, 99 (2009), 455–459 http://www.math.auckland.ac.nz/c̃onder/hypermaps.html | DOI | MR | Zbl

[21] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., ATLAS of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[22] Coxeter H. S. M., “A symmetrical arrangement of eleven hemi-icosahedra”, Proc. of the Conf. on Convexity and Graph Theory (Jerusalem, 1981), Annals of Discrete Mathematics (20): Convexity and Graph Theory, North-Holland Math. Stud., 87, eds. M. Rosenfeld, J. Zaks, North-Holland, Amsterdam, 1984, 103–114 | DOI | MR

[23] Coxeter H. S. M., Edge W. L., “The simple groups $\mathrm{PSL}(2,7)$ and $\mathrm{PSL}(2,11)$”, C. R. Math. Rep. Acad. Sci. Canada, 5 (1983), 201–206 | MR | Zbl

[24] Coxeter H. S. M., Weiss A. I., “Twisted honeycombs $\{3,5,3\}_t$ and their groups”, Geom. Dedicata, 17 (1984), 169–179 | DOI | MR | Zbl

[25] Dickson L. E., Linear Groups, Dover, New York, 1958 | MR | Zbl

[26] Dixon J. D., Mortimer B., Permutation Groups, Grad. Texts Math., 163, Springer, New York, 1996 | DOI | MR | Zbl

[27] Dyck W., “Über das Problem der Nachbargebiete”, Math. Ann., 32 (1888), 457–512 | DOI | MR

[28] S. Levy (ed.), The Eightfold Way. The Beauty of Klein's Quartic Curve, Cambridge Univ. Press, Cambridge, 1999 | MR

[29] Frobenius F. G., “Über Gruppencharaktere”, Sitzber. König. Preuss. Akad. Wiss. Berlin, 1896, 985–1021

[30] Galois É., “Lettre de Galois à M. August Chevalier”, J. Math. Pures Appl., XI (1846), 417–433 http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-16390 | MR

[31] Galois É., “Mémoire sur les conditions de résolubilité des équations par radicaux”, J. Math. Pures Appl., XI (1846), 417–433 ; Bourgne R., Azra J. P. (eds.), Écrits et Mémoires Mathématiques d'Évariste Galois, Gauthier-Villars, Paris, 1962 ; Neumann P. M., The Mathematical Writings of Évariste Galois, Chap. IV, European Math. Soc., Zürich, 2011 http://www.bibnum.education.fr/sites/default/files/galois_memoire_sur_la_resolubilite.pdf | MR | MR

[32] The GAP Group, GAP — Groups, Algorithms, and Programming, http://www.gap-system.org

[33] Gehring F. W., Martin G. J., “Minimal co-volume hyperbolic lattices. I. The spherical points of a Kleinian group”, Ann. Math., 170:2 (2009), 123–161 | DOI | MR | Zbl

[34] Girondo E., González-Diez G., Introduction to Compact Riemann Surfaces and Dessins d'Enfants, London Math. Soc. Student Texts, 79, Cambridge Univ. Press, Cambridge, 2012 | MR

[35] Godsil C., Imrich W., Razen R., “On the number of subgroups of given index in the modular group”, Monatsh. Math., 867 (1979), 273–280 | DOI | MR

[36] Goormaghtigh R., L'Intermédiaire des Mathématiciens, 24:88 (1917)

[37] Goormaghtigh conjecture, http://en.wikipedia.org/wiki/Goormaghtigh_conjecture

[38] Green J. A., “The characters of the finite general linear groups”, Trans. Amer. Math. Soc., 80 (1955), 402–447 | DOI | MR | Zbl

[39] Grothendieck A., “Esquisse d'un Programme”, Geometric Galois Actions 1. Around Grothendieck's Esquisse d'un Programme, London Math. Soc. Lect. Note Ser., 242, eds. P. Lochak, L. Schneps, Cambridge Univ. Press, Cambridge, 1997, 5–48 | MR | Zbl

[40] Grünbaum B., “Regularity of graphs, complexes and designs”, Problèmes Combinatoires et Théorie des Graphes, Coll. Int. CNRS, 260, 1977, 191–197 | MR

[41] Hamilton W. R., “Letter to John T. Graves “On the Icosian” (17th October 1856)”, Hamilton W. R. Mathematical Papers, v. III, Algebra, eds. H. Halberstam, R. E. Ingram, Cambridge Univ. Press, Cambridge, 1967, 612–625 | MR

[42] Heffter L., “Über das Problem der Nachbargebiete”, Math. Ann., 38 (1891), 477–508 | DOI | MR

[43] Huppert B., Endliche Gruppen, v. I, Springer, Berlin, 1979 | MR | Zbl

[44] Ivrissimtzis I., Singerman D., Strudwick J., “From Farey fractions to the Klein quartic and beyond”, Ars Math. Contemp., 20:1 (2021), 37–50 | DOI | MR | Zbl

[45] Jones G. A., “Primitive permutation groups containing a cycle”, Bull. Aust. Math. Soc., 89 (2014), 159–165 | DOI | MR | Zbl

[46] Jones G. A., Singerman D., Complex Functions: an Algebraic and Geometric Viewpoint, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[47] Jones G. A., Long C. D., Mednykh A. D., Hyperbolic manifolds and tessellations of type $\{3,5,3\}$ associated with $\mathrm L_2(q)$, arXiv: 1106.0867 [math.GR]

[48] Jones G. A., Wolfart J., Dessins d'Enfants on Riemann Surfaces, Springer, Cham, 2016 | MR

[49] Jones G., “A, Zvonkin A. K. Hurwitz groups as monodromy groups of dessins: several examples”, Teichmüller Theory and Grothendieck–Teichmüller Theory, eds. Lizhen Ji, Athanase Papadopoulos, Weixu Su, Higher Education Press, Beijing, 2022, 275–302, arXiv: 2012.07107

[50] Jones G. A., Zvonkin A. K., Primes in geometric series and finite permutation groups, arXiv: 2010.08023

[51] Jordan C., “Théorèmes sur les groupes primitifs”, J. Math. Pures Appl., 16:2 (1871), 383–408 | MR

[52] Jordan C., “Sur la limite de transitivité des groups non alternés”, Bull. Soc. Math. France, 1 (1873), 40–71 | DOI | MR

[53] Klein F., “Über die Erniedrigung der Modulgleichungen”, Math. Ann., 14:3 (1878), 417–427 | DOI | MR

[54] Klein F., “Über die Transformationen siebenter Ordnung der elliptischen Funktionen”, Math. Ann., 14:3 (1878), 428–471 | DOI | MR

[55] Klein F., “Über die Transformationen elfter Ordnung der elliptischen Funktionen”, Math. Ann., 15:3-4 (1879), 533–555 | DOI | MR

[56] Klein F., Gesammelte Mathematische Abhandlungen, Springer, Berlin, 1923–1973 | MR

[57] Lewis J. B., Reiner V., Stanton D., “Reflection factorizations of Singer cycles”, J. Algebr. Combin., 40 (2014), 663–691 | DOI | MR | Zbl

[58] Li W., “A note on the Bateman–Horn conjecture”, J. Number Theory, 208 (2020), 390–399, arXiv: 1906.03370 | DOI | MR | Zbl

[59] Macbeath A. M., “Generators of the linear fractional groups”, Number Theory (Houston 1967), Proc. Sympos. Pure Math., 12, eds. W. J. Leveque, E. G. Straus, Amer. Math. Soc., Providence, 1969, 14–32 | DOI | MR

[60] Marshall T. H., Martin G. J., “Minimal co-volume hyperbolic lattices. II. Simple torsion in a Kleinian group”, Ann. Math., 176:2 (2012), 261–301 | DOI | MR | Zbl

[61] Mathieu É., “Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables”, J. Math. Pures Appl., 6 (1861), 241–323

[62] Mathieu É., “Sur la fonction cinq fois transitive de $24$ quantités”, J. Math. Pures Appl., 18 (1873), 25–46

[63] McMullen P., Schulte E., Abstract Regular Polytopes, Encyclopedia of Mathematics and Its Applications, 92, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[64] McQuillan D. L., “Classification of normal congruence subgroups of the modular group”, Amer. J. Math., 87 (1965), 285–296 | DOI | MR | Zbl

[65] Müller P., “Reducibility behavior of polynomials with varying coefficients”, Israel J. Math., 94 (1996), 59–91 | DOI | MR | Zbl

[66] Niven I., Zuckerman H.S., Montgomery H. L., An Introduction to the Theory of Numbers, Wiley, New York, 1991 | MR | Zbl

[67] Online Encyclopedia of Integer Sequences, https://oeis.org/

[68] Schinzel A., Sierpiński W., “Sur certaines hypothèses concernant les nombres premiers”, Acta Arith., 4 (1958), 185–298 | DOI | MR

[69] Simpson W. A., Frame J. S., “The character tables for $\mathrm{SL}(3,q)$, $\mathrm{SU}(3,q^2)$, $\mathrm{PSL}(3,q)$, $\textup{PSU}(3,q^2)$”, Canadian J. Math., 25 (1973), 486–494 | DOI | MR | Zbl

[70] Singerman D., “Symmetries of Riemann surfaces with large automorphism group”, Math. Ann., 210 (1974), 17–32 | DOI | MR | Zbl

[71] Voight J., Private communication, 2020

[72] Walfisz A., “Zur additiven Zahlentheorie. II”, Math. Z., 40 (1936), 592–607 | DOI | MR

[73] Wielandt H., Finite Permutation Groups, Academic Press, New York, 1964 | MR | Zbl

[74] Woldar A. J., “Representing $\mathrm{M}_{11}$, $\mathrm{M}_{12}$, $\mathrm{M}_{22}$ and $\mathrm{M}_{23}$ on surfaces of least genus”, Commun. Algebra, 18 (1990), 15–86 ; Corrigendum, 605 | DOI | MR | Zbl | Zbl