@article{FPM_2024_25_2_a5,
author = {N. Ya. Amburg and E. M. Kreines},
title = {Belyi pair for the orientation cover of $\overline{\mathcal M_{0,5}^{\mathbb R}}$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {79--101},
year = {2024},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a5/}
}
TY - JOUR
AU - N. Ya. Amburg
AU - E. M. Kreines
TI - Belyi pair for the orientation cover of $\overline{\mathcal M_{0,5}^{\mathbb R}}$
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2024
SP - 79
EP - 101
VL - 25
IS - 2
UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a5/
LA - ru
ID - FPM_2024_25_2_a5
ER -
N. Ya. Amburg; E. M. Kreines. Belyi pair for the orientation cover of $\overline{\mathcal M_{0,5}^{\mathbb R}}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 79-101. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a5/
[1] Amburg N. Ya., Simmetrii grafov na poverkhnostyakh i algebraicheskie krivye, Dis.\ldots kand. fiz.-mat. nauk, M., 2007
[2] Amburg N. Ya., Kreines E. M., “Vychislenie pervogo klassa Shtifelya-Uitni mnogoobraziya $\overline{\mathcal M_{0,n}{\mathbb R}}$”, Fundament. i prikl. matem., 18:6 (2013), 51–75
[3] Amburg N. Ya., Kreines E. M., Shabat G. B., “Paraziticheskie resheniya sistem uravnenii, opredelyayuschie funktsii Belogo ploskikh derevev”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2004, no. 1, 20–25 | MR | Zbl
[4] Gurvich V. A., Shabat G. B., “Karty poverkhnostei i ikh skhemy”, DAN SSSR, 305:6 (1989), 390–394 | Zbl
[5] Bring E. S., Meletemata quaedam mathematematica circa transformationem aequationum algebraicarum, Lund, 1786
[6] Ceyhan O., On moduli of pointed real curves of genus zero, 2007, arXiv: math.AG/0207058.v5 | MR
[7] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 | DOI | MR | Zbl
[8] Devadoss S., “Tessellations of moduli spaces and the mosaic operad”, Contemp. Math., 239, 1999, 91–114 | DOI | MR | Zbl
[9] Devadoss S., Morava J., “Navigation in tree spaces”, Adv. Appl. Math., 67 (2015), 75–95 | DOI | MR | Zbl
[10] Etingof P., Henriques A., Kamnitzer J., Rains E., “The cohomology ring of the real locus of the moduli space of stable curves of genus $0$ with marked points”, Ann. Math., 171:2 (2010), 731–777 | DOI | MR | Zbl
[11] Grothendieck A., “Esquisse d'un Programme”, Geometric Galois Actions 1. Around Grothendieck's Esquisse d'un Programme, London Math. Soc. Lect. Note Ser., 242, eds. P. Lochak, L. Schneps, Cambridge Univ. Press, Cambridge, 1997, 5–48 | MR | Zbl
[12] Kapranov M., “The permuto-associahedron, MacLane coherence theorem and the asymptotic zones for the KZ equation”, J. Pure Appl. Algebra, 85 (1993), 119–142 | DOI | MR | Zbl
[13] Klein F., Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884 | MR
[14] Kreck M., “Orientation covering — definition”, Bulletin of the Manifold Atlas, 2014 http://www.boma.mpim-bonn.mpg.de/data/54screen.pdf
[15] Lando S. K., Zvonkin A. K., Graphs on surfaces and their application, Springer, Berlin, 2004 | MR
[16] Shabat G., “Calculating and drawing Belyi pairs”, Zap. Nauchn. Sem. POMI, 446, 2016, 182–220 | MR
[17] Shabat G. B., Voevodsky V. A., “Drawing curves over number fields”, The Grothendieck Festschrift, v. III, Birkhäuser, 1990, 199–227 | DOI | MR | Zbl
[18] Zvonkin A. K., “Functional composition is a generalized symmetry”, Symmetry: Culture Sci., 21:1-4 (2010), 333–368