On the conjecture of the Galois invariance of the Tutte polynomial for Grothendieck's dessins d'enfants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 63-77
Cet article a éte moissonné depuis la source Math-Net.Ru
Yuri Manin and Matilde Marcolli proposed a novel method of constructing invariants of the action of the absolute Galois group on Grothendieck's dessins d'enfant. In particular, they formulated the conjecture that the Tutte polynomial is an example of such an invariant. In this note, we present a counterexample that refutes this conjecture.
@article{FPM_2024_25_2_a4,
author = {N. Amburg and L. Bril},
title = {On the conjecture of the {Galois} invariance of the {Tutte} polynomial for {Grothendieck's} dessins d'enfants},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {63--77},
year = {2024},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a4/}
}
TY - JOUR AU - N. Amburg AU - L. Bril TI - On the conjecture of the Galois invariance of the Tutte polynomial for Grothendieck's dessins d'enfants JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 63 EP - 77 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a4/ LA - ru ID - FPM_2024_25_2_a4 ER -
N. Amburg; L. Bril. On the conjecture of the Galois invariance of the Tutte polynomial for Grothendieck's dessins d'enfants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 63-77. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a4/
[1] Filimonenkov V. O., Shabat G. B., “Polya opredeleniya ratsionalnykh funktsii odnoi peremennoi s tremya kriticheskimi znacheniyami”, Fundament. i prikl. matem., 1:3 (1995), 781–799 | MR | Zbl
[2] Manin Yu. I., Marcolli M., “Quantum statistical mechanics of the absolute Galois group”, SIGMA Symmetry Integrability Geom. Methods Appl., 16 (2020), 038 | MR | Zbl