@article{FPM_2024_25_2_a2,
author = {N. M. Adrianov and A. M. Vatuzov},
title = {Belyi functions of the special weighted trees of $(2,3)$-type},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {17--39},
year = {2024},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a2/}
}
N. M. Adrianov; A. M. Vatuzov. Belyi functions of the special weighted trees of $(2,3)$-type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 2, pp. 17-39. http://geodesic.mathdoc.fr/item/FPM_2024_25_2_a2/
[1] Adrianov N. M., Zvonkin A. K., “Vzveshennye derevya s primitivnymi gruppami vraschenii reber”, Fundament. i prikl. matem., 18:6 (2013), 5–50
[2] Vatuzov A. M., “Vychislenie funktsii Belogo s ispolzovaniem tekhniki modulyarnykh funktsii”, Intellekt. sistemy. Teoriya i prilozheniya, 25:4 (2021), 88–91
[3] Dzhons G. A., Zvonkin A. K. Desyat «detskikh risunkov», “Kleina stepeni 11: tema s variatsiyami”, Fundament. i prikl. matem., 25:2 (2024), 103–175, arXiv: 2104.12015
[4] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010
[5] Kochetkov Yu. Yu., “Devyatirebernye ploskie derevya. Katalog”, Fundament. i prikl. matem., 13:6 (2007), 159–195
[6] Adrianov N. M., Pakovich F., Zvonkin A. K., Davenport–Zannier Polynomials and Dessins d'Enfants, AMS Math. Surveys Monographs, 249, Providence, RI, 2020 | DOI | MR
[7] Bétréma J., Péré D., Zvonkin A. K., Plane Trees and Their Shabat Polynomials. Catalog: Technical Report LaBRI No 92-75, Bordeaux, 1992
[8] Cassou-Noguès P., Couveignes J.-M., “Factorisations explicites de $g(y)-h(z)$”, Acta Arith., 87:4 (1999), 291–317 | DOI | MR | Zbl
[9] Couveignes J.-M., “Calcul et rationalité de fonctions de Belyi en genre $0$”, Ann. Inst. Fourier, 44:1 (1994), 1–38 | DOI | MR | Zbl
[10] Hoyden-Siedersleben G., Matzat B. H., “Realisierung sporadischer einfacher Gruppen als Galoisgruppen über Kreisteilungskörpern”, J. Algebra, 101 (1986), 273–286 | DOI | MR | Zbl
[11] Klein F., “Über die Transformation der elliptischen Functionen und die Auflösung der Gleichungen fünften Grades”, Math. Ann., 14 (1878), 111–172 | DOI | MR
[12] Klein F., “Über die Erniedrigung der Modulargleichungen”, Math. Ann., 14 (1878), 417–427 | DOI | MR
[13] Klein F., “Über die Transformation elfter Ordnung der elliptischen Functionen”, Math. Ann., 15 (1879), 533–555 | DOI | MR
[14] Monien H. (Sankt-Peterburg, 2014) http://www.pdmi.ras.ru/EIMI/2014/EG/presentations/Hartmut
[15] Monien H., The sporadic group J2, Hauptmodul and Belyi map, 2017, arXiv: 1703.05200 | MR | Zbl
[16] Monien H., The sporadic group Co3, Hauptmodul and Belyi map, 2018, arXiv: 1802.06923
[17] Musty M., Schiavone S., Sijsling J., Voight J., “A database of Belyi maps”, Proc. of the Thirteenth Algorithmic Number Theory Symposium, The Open Book Series, 2, 2019, 375–392 https://www.lmfdb.org/Belyi/ | DOI | MR | Zbl
[18] Pakovich F., Zvonkin A. K., “Minimum degree of the difference of two polynomials over $\mathbb{Q}$, and weighted plane trees”, Selecta Math. New Ser., 20:4 (2014), 1003–1065 | DOI | MR | Zbl
[19] Pakovich F., Zvonkin A. K., “Davenport–Zannier polynomials over $\mathbb{Q}$”, Int. J. Number Theory, 14:4 (2018), 925–974 | DOI | MR | Zbl
[20] Schwarz H., “Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt”, J. Reine Angew. Math., 75 (1873), 292–335 | MR
[21] Sijsling J., Voight J., “On computing Belyi maps”, Pub. Math. de Besançon, 1 (2014), 73–131 | MR | Zbl
[22] Zvonkin A., How to draw a group?, Discrete Math., 180 (1998), 403–413 | DOI | MR | Zbl