On the conjecture of M.~Janet for systems of partial differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 123-131
Voir la notice de l'article provenant de la source Math-Net.Ru
M. Janet in 1921 conjectured that an analytic solution to systems of $n$ consistent $m$-partial differential equations of $n$ unknown functions must contain at least one arbitrary function of $k$ variables, $k\geq m-1$. E. Kolchin at the Moscow International Congress in 1966 formulated an algebraic version of this conjecture. In the case of linear systems, it was proven by J. Johnson in 1978, but for nonlinear systems the question is still open. This paper shows that the generalized Janet conjecture does not hold for the intersection of $n$ differential hyperspaces in the case of any number of derivations $m>0$.
@article{FPM_2024_25_1_a7,
author = {M. V. Kondratieva},
title = {On the conjecture of {M.~Janet} for systems of partial differential equations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {123--131},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a7/}
}
TY - JOUR AU - M. V. Kondratieva TI - On the conjecture of M.~Janet for systems of partial differential equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 123 EP - 131 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a7/ LA - ru ID - FPM_2024_25_1_a7 ER -
M. V. Kondratieva. On the conjecture of M.~Janet for systems of partial differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 123-131. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a7/