The Gr\"obner--Shirshov bases method for vertex algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 103-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we show how to apply the Gröbner–Shirshov bases method for modules over an associative algebra to the study of vertex algebras defined by generators and relations. We compute Gröbner–Shirshov bases for a series of vertex algebras and study the problem of embedding of a left-symmetric algebra into a vertex one preserving the normally ordered product.
@article{FPM_2024_25_1_a6,
     author = {R. A. Kozlov and P. S. Kolesnikov},
     title = {The {Gr\"obner--Shirshov} bases method for vertex algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {103--122},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/}
}
TY  - JOUR
AU  - R. A. Kozlov
AU  - P. S. Kolesnikov
TI  - The Gr\"obner--Shirshov bases method for vertex algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 103
EP  - 122
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/
LA  - ru
ID  - FPM_2024_25_1_a6
ER  - 
%0 Journal Article
%A R. A. Kozlov
%A P. S. Kolesnikov
%T The Gr\"obner--Shirshov bases method for vertex algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 103-122
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/
%G ru
%F FPM_2024_25_1_a6
R. A. Kozlov; P. S. Kolesnikov. The Gr\"obner--Shirshov bases method for vertex algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 103-122. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/

[1] Mikhalev A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya konformnykh algebr Li. Chast 2: supersluchai”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2010, no. 1, 36–41 | Zbl

[2] Adamović D., Pedić V., “On fusion rules and intertwining operators for the Weyl vertex algebra”, J. Math. Phys., 60:8 (2019), 081701 | DOI | MR | Zbl

[3] Bakalov B., Kac V. G., “Field algebras”, Int. Math. Res. Notices, 3 (2003), 123–159 | DOI | MR | Zbl

[4] Bakalov B., De Sole A. Kac V. G., “Computation of cohomology of vertex algebras”, Jpn. J. Math., 16:1 (2021), 81–154 | DOI | MR | Zbl

[5] Barakat A., De Sole A., Kac V. G., “Poisson vertex algebras in the theory of Hamiltonian equations”, Jpn. J. Math., 4 (2009), 141–252 | DOI | MR | Zbl

[6] Beilinson A. A., Drinfeld V. G., Chiral Algebras, Amer. Math. Soc. Colloq. Publ., 51, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[7] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys., 241 (1984), 333–380 | DOI | MR | Zbl

[8] Bokut L. A., Chen Y., “Gröbner-Shirshov bases and their calculation”, Bull. Math. Sci., 4:3 (2014), 325–395 | DOI | MR | Zbl

[9] Bokut L., Chen Y., Kalorkoti K., Kolesnikov P., Lopatkin V., Gröbner-Shirshov bases, World Sci. Publ., Hackensack, NJ, 2020 | MR

[10] Bokut L. A., Fong Y., Ke W.-F., “Composition-Diamond lemma for associative conformal algebras”, J. Algebra, 272 (2004), 739–774 | DOI | MR | Zbl

[11] Borcherds R. E., “Vertex algebras, Kac-Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. U.S.A, 83 (1986), 3068–3071 | DOI | MR

[12] Burde D., “Simple left-symmetric algebras with solvable Lie algebra”, Manuscripta Math., 95:3 (1998), 397–411 | DOI | MR | Zbl

[13] Dotsenko V., Tamaroff P., Tangent Complexes and the Diamond Lemma, arXiv: 2010.14792

[14] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Math. Surveys Monographs, 88, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[15] Frenkel I. B., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, New York, 1998 | MR

[16] Kac V. G., Vertex Algebras for Beginners, Univ. Lect. Ser., 10, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[17] Kang S.-J., Lee K.-H., “Gröbner-Shirshov bases for representation theory”, J. Korean Math. Soc., 37 (2000), 55–72 | MR | Zbl

[18] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217 (1999), 496–527 | DOI | MR | Zbl

[19] Xu X., “Quadratic conformal superalgebras”, J. Algebra, 231 (2000), 1–38 | DOI | MR | Zbl