Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2024_25_1_a6, author = {R. A. Kozlov and P. S. Kolesnikov}, title = {The {Gr\"obner--Shirshov} bases method for vertex algebras}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {103--122}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/} }
TY - JOUR AU - R. A. Kozlov AU - P. S. Kolesnikov TI - The Gr\"obner--Shirshov bases method for vertex algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 103 EP - 122 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/ LA - ru ID - FPM_2024_25_1_a6 ER -
R. A. Kozlov; P. S. Kolesnikov. The Gr\"obner--Shirshov bases method for vertex algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 103-122. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/
[1] Mikhalev A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya konformnykh algebr Li. Chast 2: supersluchai”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2010, no. 1, 36–41 | Zbl
[2] Adamović D., Pedić V., “On fusion rules and intertwining operators for the Weyl vertex algebra”, J. Math. Phys., 60:8 (2019), 081701 | DOI | MR | Zbl
[3] Bakalov B., Kac V. G., “Field algebras”, Int. Math. Res. Notices, 3 (2003), 123–159 | DOI | MR | Zbl
[4] Bakalov B., De Sole A. Kac V. G., “Computation of cohomology of vertex algebras”, Jpn. J. Math., 16:1 (2021), 81–154 | DOI | MR | Zbl
[5] Barakat A., De Sole A., Kac V. G., “Poisson vertex algebras in the theory of Hamiltonian equations”, Jpn. J. Math., 4 (2009), 141–252 | DOI | MR | Zbl
[6] Beilinson A. A., Drinfeld V. G., Chiral Algebras, Amer. Math. Soc. Colloq. Publ., 51, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[7] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys., 241 (1984), 333–380 | DOI | MR | Zbl
[8] Bokut L. A., Chen Y., “Gröbner-Shirshov bases and their calculation”, Bull. Math. Sci., 4:3 (2014), 325–395 | DOI | MR | Zbl
[9] Bokut L., Chen Y., Kalorkoti K., Kolesnikov P., Lopatkin V., Gröbner-Shirshov bases, World Sci. Publ., Hackensack, NJ, 2020 | MR
[10] Bokut L. A., Fong Y., Ke W.-F., “Composition-Diamond lemma for associative conformal algebras”, J. Algebra, 272 (2004), 739–774 | DOI | MR | Zbl
[11] Borcherds R. E., “Vertex algebras, Kac-Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. U.S.A, 83 (1986), 3068–3071 | DOI | MR
[12] Burde D., “Simple left-symmetric algebras with solvable Lie algebra”, Manuscripta Math., 95:3 (1998), 397–411 | DOI | MR | Zbl
[13] Dotsenko V., Tamaroff P., Tangent Complexes and the Diamond Lemma, arXiv: 2010.14792
[14] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Math. Surveys Monographs, 88, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[15] Frenkel I. B., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, New York, 1998 | MR
[16] Kac V. G., Vertex Algebras for Beginners, Univ. Lect. Ser., 10, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[17] Kang S.-J., Lee K.-H., “Gröbner-Shirshov bases for representation theory”, J. Korean Math. Soc., 37 (2000), 55–72 | MR | Zbl
[18] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217 (1999), 496–527 | DOI | MR | Zbl
[19] Xu X., “Quadratic conformal superalgebras”, J. Algebra, 231 (2000), 1–38 | DOI | MR | Zbl