The Gr\"obner--Shirshov bases method for vertex algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 103-122
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we show how to apply the Gröbner–Shirshov bases method for modules over an associative algebra to the study of vertex algebras defined by generators and relations. We compute Gröbner–Shirshov bases for a series of vertex algebras and study the problem of embedding of a left-symmetric algebra into a vertex one preserving the normally ordered product.
@article{FPM_2024_25_1_a6,
author = {R. A. Kozlov and P. S. Kolesnikov},
title = {The {Gr\"obner--Shirshov} bases method for vertex algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {103--122},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/}
}
TY - JOUR AU - R. A. Kozlov AU - P. S. Kolesnikov TI - The Gr\"obner--Shirshov bases method for vertex algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 103 EP - 122 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/ LA - ru ID - FPM_2024_25_1_a6 ER -
R. A. Kozlov; P. S. Kolesnikov. The Gr\"obner--Shirshov bases method for vertex algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 103-122. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a6/