Algebraic Lie algebras with finite grading
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 87-102
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents a variant of the proof of local finite-dimensionality of Lie PI-algebras with an algebraic adjoint representation over fields of characteristic zero without the use of extremal elements, a number of similar conclusions for such algebras over fields of characteristic $p> 7$, and generalizes the description of the locally finite radical of algebraic Mal'tsev locally PI-algebras to any base field of characteristic zero.
@article{FPM_2024_25_1_a5,
author = {A. Yu. Golubkov},
title = {Algebraic {Lie} algebras with finite grading},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {87--102},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a5/}
}
A. Yu. Golubkov. Algebraic Lie algebras with finite grading. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 87-102. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a5/