Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2024_25_1_a14, author = {A. I. Shtern}, title = {Criterion for the extendability of a~unitary character on a~normal subgroup of a~product group to a~pure one-dimensional pseudorepresentation of the group}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {251--254}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a14/} }
TY - JOUR AU - A. I. Shtern TI - Criterion for the extendability of a~unitary character on a~normal subgroup of a~product group to a~pure one-dimensional pseudorepresentation of the group JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 251 EP - 254 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a14/ LA - ru ID - FPM_2024_25_1_a14 ER -
%0 Journal Article %A A. I. Shtern %T Criterion for the extendability of a~unitary character on a~normal subgroup of a~product group to a~pure one-dimensional pseudorepresentation of the group %J Fundamentalʹnaâ i prikladnaâ matematika %D 2024 %P 251-254 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a14/ %G ru %F FPM_2024_25_1_a14
A. I. Shtern. Criterion for the extendability of a~unitary character on a~normal subgroup of a~product group to a~pure one-dimensional pseudorepresentation of the group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 251-254. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a14/
[1] Shtern A. I., “Spetsificheskie svoistva odnomernykh psevdopredstavlenii grupp”, Fundament. i prikl. matem., 21:1 (2016), 247–255 | MR
[2] Shtern A. I., “Lokalno ogranichennye finalno prednepreryvnye konechnomernye kvazipredstavleniya svyaznykh lokalno kompaktnykh grupp”, Matem. sb., 208:10 (2017), 149–170 | DOI | MR | Zbl
[3] Shtern A. I., “Quasi-symmetry. I”, Russ. J. Math. Phys., 2:3 (1994), 353–382 | MR | Zbl
[4] Shtern A. I., “Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture”, J. Math. Sci., 159:5 (2009), 653–751 | DOI | MR | Zbl
[5] Shtern A. I., “Extension of pseudocharacters from normal subgroups”, Proc. Jangjeon Math. Soc., 18:4 (2015), 427–433 | MR | Zbl
[6] Shtern A. I., “Extension of characters on the normal subgroup of a semi-direct product group to one-dimensional pseudorepresentations of the group”, Proc. Jangjeon Math. Soc., 19:3 (2016), 451–455 | MR | Zbl
[7] Shtern A. I., “Extension of pseudocharacters from normal subgroups. II”, Proc. Jangjeon Math. Soc., 19:2 (2016), 213–218 | MR | Zbl
[8] Shtern A. I., “Extension of pseudocharacters from normal subgroups. III”, Proc. Jangjeon Math. Soc., 19:4 (2016), 609–614 | MR | Zbl
[9] Shtern A. I., “Corrections to «Extensions of characters from the normal subgroup of a semidirect product group to one-dimensional pseudorepresentations of the group»”, Proc. Jangjeon Math. Soc., 20:2 (2017), 313–317 | MR | Zbl
[10] Shtern A. I., “A version of van der Waerden's theorem and a proof of Mishchenko's conjecture on homomorphisms of locally compact groups”, Izv. Math., 72:1 (2008), 169–205 | DOI | MR | Zbl