The structure of topologically left Artinian rings in which all strictly principal left ideals are closed
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 213-217
This paper studies the structure of topologically left Artinian rings in which all strictly principal left ideals are closed. By a strictly principal left ideal of some ring $R$ we mean a left ideal of the form $Rx$ for some element $x$ of the ring. It is proved that any topologically Artinian ring in which all strictly principal left ideals are closed can be represented as a factor ring of a topologically direct sum of rings isomorphic to some rings of all matrices of a fixed finite order over some skew field, where the factor ring is taken over the maximal nilpotent ideal.
@article{FPM_2024_25_1_a11,
author = {V. V. Tenzina},
title = {The structure of topologically left {Artinian} rings in which all strictly principal left ideals are closed},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {213--217},
year = {2024},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a11/}
}
TY - JOUR AU - V. V. Tenzina TI - The structure of topologically left Artinian rings in which all strictly principal left ideals are closed JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 213 EP - 217 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a11/ LA - ru ID - FPM_2024_25_1_a11 ER -
V. V. Tenzina. The structure of topologically left Artinian rings in which all strictly principal left ideals are closed. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 213-217. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a11/
[1] Glavatskii S. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. I”, Fundament. i prikl. matem., 16:8 (2010), 49–68
[2] Glavatskii S. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. II”, Fundament. i prikl. matem., 17:1 (2011), 53–64
[3] Tenzina V. V., “Topologicheskie koltsa i moduli s topologicheskoi razmernostyu Krullya”, Fundament. i prikl. matem., 10:3 (2004), 215–230 | Zbl
[4] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972