The structure of topologically left Artinian rings in which all strictly principal left ideals are closed
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 213-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the structure of topologically left Artinian rings in which all strictly principal left ideals are closed. By a strictly principal left ideal of some ring $R$ we mean a left ideal of the form $Rx$ for some element $x$ of the ring. It is proved that any topologically Artinian ring in which all strictly principal left ideals are closed can be represented as a factor ring of a topologically direct sum of rings isomorphic to some rings of all matrices of a fixed finite order over some skew field, where the factor ring is taken over the maximal nilpotent ideal.
@article{FPM_2024_25_1_a11,
     author = {V. V. Tenzina},
     title = {The structure of topologically left {Artinian} rings in which all strictly principal left ideals are closed},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--217},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a11/}
}
TY  - JOUR
AU  - V. V. Tenzina
TI  - The structure of topologically left Artinian rings in which all strictly principal left ideals are closed
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 213
EP  - 217
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a11/
LA  - ru
ID  - FPM_2024_25_1_a11
ER  - 
%0 Journal Article
%A V. V. Tenzina
%T The structure of topologically left Artinian rings in which all strictly principal left ideals are closed
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 213-217
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a11/
%G ru
%F FPM_2024_25_1_a11
V. V. Tenzina. The structure of topologically left Artinian rings in which all strictly principal left ideals are closed. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 213-217. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a11/

[1] Glavatskii S. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. I”, Fundament. i prikl. matem., 16:8 (2010), 49–68

[2] Glavatskii S. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. II”, Fundament. i prikl. matem., 17:1 (2011), 53–64

[3] Tenzina V. V., “Topologicheskie koltsa i moduli s topologicheskoi razmernostyu Krullya”, Fundament. i prikl. matem., 10:3 (2004), 215–230 | Zbl

[4] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972