Universal-existential equivalence of linear groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 205-212

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that the groups $\mathrm{GL}$ and $\mathrm{SL}$ over infinite fields of characteristics not equal to $2$ are $(\forall \exists)$-equivalent if and only if their dimensions coincide and the corresponding fields are $(\forall \exists)$-equivalent.
@article{FPM_2024_25_1_a10,
     author = {P. Pritup},
     title = {Universal-existential equivalence of linear groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--212},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/}
}
TY  - JOUR
AU  - P. Pritup
TI  - Universal-existential equivalence of linear groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 205
EP  - 212
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/
LA  - ru
ID  - FPM_2024_25_1_a10
ER  - 
%0 Journal Article
%A P. Pritup
%T Universal-existential equivalence of linear groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 205-212
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/
%G ru
%F FPM_2024_25_1_a10
P. Pritup. Universal-existential equivalence of linear groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 205-212. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/