Universal-existential equivalence of linear groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 205-212
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that the groups $\mathrm{GL}$ and $\mathrm{SL}$ over infinite fields of characteristics not equal to $2$ are $(\forall \exists)$-equivalent if and only if their dimensions coincide and the corresponding fields are $(\forall \exists)$-equivalent.
@article{FPM_2024_25_1_a10,
author = {P. Pritup},
title = {Universal-existential equivalence of linear groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {205--212},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/}
}
P. Pritup. Universal-existential equivalence of linear groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 205-212. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/