Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2024_25_1_a10, author = {P. Pritup}, title = {Universal-existential equivalence of linear groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {205--212}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/} }
P. Pritup. Universal-existential equivalence of linear groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 205-212. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/
[1] Bunina E. I., Kaleeva G. A., “Universalnaya ekvivalentnost obschikh i spetsialnykh lineinykh grupp nad polyami”, Fundament. i prikl. matem., 21:3 (2016), 73–106
[2] Bunina E. I., Mikhalev A. V., Pinus A. G., Elementarnaya i blizkie k nei logicheskie ekvivalentnosti klassicheskikh i universalnykh algebr, MTsNMO, M., 2015
[3] Gurevich Yu. Sh., Kokorin A. I., “Universalnaya ekvivalentnost uporyadochennykh abelevykh grupp”, Algebra i logika, 2:1 (1963), 37–39 | MR | Zbl
[4] Taimanov A. D., “Kharakteristiki aksiomatiziruemykh klassov modelei”, Algebra i logika, 1:4 (1962), 5–31 | Zbl
[5] Khisamiev N. G., “Universalnaya teoriya strukturno uporyadochennykh abelevykh grupp”, Algebra i logika, 5:3 (1966), 71–76 | Zbl
[6] Beidar C. I., Mikhalev A. V., “On Malcev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131, 1992, 29–35 | DOI | MR | Zbl
[7] Bragin V. A., Bunina E. I., “Elementary equivalence of linear groups over rings with a finite number of central idempotents and over Boolean rings”, J. Math. Sci., 201 (2014), 438–445 | DOI | MR | Zbl
[8] Bunina E. I., “Isomorphisms and elementary equivalence of Chevalley groups over commutative rings”, Sb. Math., 210:8 (2019), 1067–1091 | DOI | MR | Zbl
[9] Eklof P. C., “Some model theory for Abelian groups”, J. Symb. Logic, 37 (1972), 335–342 | DOI | MR | Zbl