Universal-existential equivalence of linear groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 205-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that the groups $\mathrm{GL}$ and $\mathrm{SL}$ over infinite fields of characteristics not equal to $2$ are $(\forall \exists)$-equivalent if and only if their dimensions coincide and the corresponding fields are $(\forall \exists)$-equivalent.
@article{FPM_2024_25_1_a10,
     author = {P. Pritup},
     title = {Universal-existential equivalence of linear groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--212},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/}
}
TY  - JOUR
AU  - P. Pritup
TI  - Universal-existential equivalence of linear groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 205
EP  - 212
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/
LA  - ru
ID  - FPM_2024_25_1_a10
ER  - 
%0 Journal Article
%A P. Pritup
%T Universal-existential equivalence of linear groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 205-212
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/
%G ru
%F FPM_2024_25_1_a10
P. Pritup. Universal-existential equivalence of linear groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 205-212. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a10/

[1] Bunina E. I., Kaleeva G. A., “Universalnaya ekvivalentnost obschikh i spetsialnykh lineinykh grupp nad polyami”, Fundament. i prikl. matem., 21:3 (2016), 73–106

[2] Bunina E. I., Mikhalev A. V., Pinus A. G., Elementarnaya i blizkie k nei logicheskie ekvivalentnosti klassicheskikh i universalnykh algebr, MTsNMO, M., 2015

[3] Gurevich Yu. Sh., Kokorin A. I., “Universalnaya ekvivalentnost uporyadochennykh abelevykh grupp”, Algebra i logika, 2:1 (1963), 37–39 | MR | Zbl

[4] Taimanov A. D., “Kharakteristiki aksiomatiziruemykh klassov modelei”, Algebra i logika, 1:4 (1962), 5–31 | Zbl

[5] Khisamiev N. G., “Universalnaya teoriya strukturno uporyadochennykh abelevykh grupp”, Algebra i logika, 5:3 (1966), 71–76 | Zbl

[6] Beidar C. I., Mikhalev A. V., “On Malcev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131, 1992, 29–35 | DOI | MR | Zbl

[7] Bragin V. A., Bunina E. I., “Elementary equivalence of linear groups over rings with a finite number of central idempotents and over Boolean rings”, J. Math. Sci., 201 (2014), 438–445 | DOI | MR | Zbl

[8] Bunina E. I., “Isomorphisms and elementary equivalence of Chevalley groups over commutative rings”, Sb. Math., 210:8 (2019), 1067–1091 | DOI | MR | Zbl

[9] Eklof P. C., “Some model theory for Abelian groups”, J. Symb. Logic, 37 (1972), 335–342 | DOI | MR | Zbl