Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 31-45

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that every automorphism of a Chevalley group with the root system $\mathbf G_2$ over a commutative ring $R$ with $1/3$ generated by the invertible elements and the ideal $2R$ is a composition of ring and inner automorphisms.
@article{FPM_2023_24_4_a2,
     author = {E. I. Bunina and M. A. Vladykina},
     title = {Automorphisms of {a~Chevalley} group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - M. A. Vladykina
TI  - Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 31
EP  - 45
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/
LA  - ru
ID  - FPM_2023_24_4_a2
ER  - 
%0 Journal Article
%A E. I. Bunina
%A M. A. Vladykina
%T Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 31-45
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/
%G ru
%F FPM_2023_24_4_a2
E. I. Bunina; M. A. Vladykina. Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 31-45. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/