Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 31-45
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that every automorphism of a Chevalley group with the root system $\mathbf G_2$ over a commutative ring $R$ with $1/3$ generated by the invertible elements and the ideal $2R$ is a composition of ring and inner automorphisms.
@article{FPM_2023_24_4_a2,
author = {E. I. Bunina and M. A. Vladykina},
title = {Automorphisms of {a~Chevalley} group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {31--45},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/}
}
TY - JOUR AU - E. I. Bunina AU - M. A. Vladykina TI - Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2023 SP - 31 EP - 45 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/ LA - ru ID - FPM_2023_24_4_a2 ER -
%0 Journal Article %A E. I. Bunina %A M. A. Vladykina %T Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$ %J Fundamentalʹnaâ i prikladnaâ matematika %D 2023 %P 31-45 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/ %G ru %F FPM_2023_24_4_a2
E. I. Bunina; M. A. Vladykina. Automorphisms of a~Chevalley group of type $\mathbf G_2$ over a~commutative ring~$R$ with $1/3$ generated by the invertible elements and~$2R$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 31-45. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a2/