Finitely generated Abelian $n$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 217-237

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the isomorphism of a finitely generated Abelian $n$-ary group and of a direct product of a finite number of indecomposable Abelian semi-cyclic $n$-ary groups, being partly finite primary and partly infinite ones, is proved. A complete system of invariants for finitely generated Abelian $n$-ary groups is found. We point out a necessary and sufficient condition for a direct product of infinite Abelian semi-cyclic $n$-ary groups to be a free $n$-ary group in the class of Abelian $n$-ary groups.
@article{FPM_2023_24_4_a12,
     author = {N. A. Shchuchkin},
     title = {Finitely generated {Abelian} $n$-groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--237},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a12/}
}
TY  - JOUR
AU  - N. A. Shchuchkin
TI  - Finitely generated Abelian $n$-groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 217
EP  - 237
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a12/
LA  - ru
ID  - FPM_2023_24_4_a12
ER  - 
%0 Journal Article
%A N. A. Shchuchkin
%T Finitely generated Abelian $n$-groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 217-237
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a12/
%G ru
%F FPM_2023_24_4_a12
N. A. Shchuchkin. Finitely generated Abelian $n$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 217-237. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a12/