Computation of the component group of an arbitrary real algebraic group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 199-211
Voir la notice de l'article provenant de la source Math-Net.Ru
We compute explicitly the group of connected components $\pi_0G(\mathbb{R})$ of the real Lie group $G(\mathbb{R})$ for an arbitrary (not necessarily linear) connected algebraic group $G$ defined over the field $\mathbb{R}$ of real numbers. In particular, it turns out that $\pi_0G(\mathbb{R})$ is always an elementary Abelian $2$-group. The result looks most transparent in the cases where $G$ is a linear algebraic group or an Abelian variety. The computation is based on structure results on algebraic groups and Galois cohomology methods.
@article{FPM_2023_24_4_a10,
author = {D. A. Timashev},
title = {Computation of the component group of an arbitrary real algebraic group},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {199--211},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a10/}
}
D. A. Timashev. Computation of the component group of an arbitrary real algebraic group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 199-211. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a10/