Computation of the component group of an arbitrary real algebraic group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 199-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute explicitly the group of connected components $\pi_0G(\mathbb{R})$ of the real Lie group $G(\mathbb{R})$ for an arbitrary (not necessarily linear) connected algebraic group $G$ defined over the field $\mathbb{R}$ of real numbers. In particular, it turns out that $\pi_0G(\mathbb{R})$ is always an elementary Abelian $2$-group. The result looks most transparent in the cases where $G$ is a linear algebraic group or an Abelian variety. The computation is based on structure results on algebraic groups and Galois cohomology methods.
@article{FPM_2023_24_4_a10,
     author = {D. A. Timashev},
     title = {Computation of the component group of an arbitrary real algebraic group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {199--211},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a10/}
}
TY  - JOUR
AU  - D. A. Timashev
TI  - Computation of the component group of an arbitrary real algebraic group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 199
EP  - 211
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a10/
LA  - ru
ID  - FPM_2023_24_4_a10
ER  - 
%0 Journal Article
%A D. A. Timashev
%T Computation of the component group of an arbitrary real algebraic group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 199-211
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a10/
%G ru
%F FPM_2023_24_4_a10
D. A. Timashev. Computation of the component group of an arbitrary real algebraic group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 199-211. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a10/

[1] Koblits N., Vvedenie v ellipticheskie krivye i modulyarnye formy, Mir, M., 1988 | MR

[2] Serr Zh.-P., Kogomologii Galua, Mir, M., 1988

[3] Timashev D. A., “O gruppe komponent veschestvennoi algebraicheskoi gruppy”, Tr. MIAN, 318, 2022, 193–203 | DOI | Zbl

[4] Borel A., Tits J., “Compléments à l'article: «Groupes réductifs»”, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 253–276 | DOI | MR | Zbl

[5] Borovoi M., Gabber O., “A short proof of Timashev's theorem on the real component group of a real reductive group”, Arch. Math., 120:1 (2023), 9–13 | DOI | MR | Zbl

[6] Borovoi M., Timashev D. A., “Galois cohomology and component group of a real reductive group”, Israel J. Math., 2023 | MR

[7] Brion M., “Some structure theorems for algebraic groups”, Algebraic Groups: Structure and Actions, Proc. Sympos. Pure Math., 94, ed. M. B. Can, Amer. Math. Soc., Providence, 2017, 53–126 | DOI | MR | Zbl

[8] Hochschild G. P., Basic Theory of Algebraic Groups and Lie Algebras, Grad. Texts Math., 75, Springer, New York, 1981 | DOI | MR | Zbl

[9] Matsumoto H., “Quelques remarques sur les groupes de Lie algébriques réels”, J. Math. Soc. Japan, 16:4 (1964), 419–446 | MR | Zbl