Extendable essay as a~web resource for supporting lecture courses
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

An extendable essay as extendable lecture notes is a web resource that makes it easier for the user to master the material of a particular lecture course. For example, we consider such a course on a chapter of computer algebra.
@article{FPM_2023_24_4_a0,
     author = {S. A. Abramov and A. A. Ryabenko and D. E. Khmelnov},
     title = {Extendable essay as a~web resource for supporting lecture courses},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a0/}
}
TY  - JOUR
AU  - S. A. Abramov
AU  - A. A. Ryabenko
AU  - D. E. Khmelnov
TI  - Extendable essay as a~web resource for supporting lecture courses
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 3
EP  - 9
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a0/
LA  - ru
ID  - FPM_2023_24_4_a0
ER  - 
%0 Journal Article
%A S. A. Abramov
%A A. A. Ryabenko
%A D. E. Khmelnov
%T Extendable essay as a~web resource for supporting lecture courses
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 3-9
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a0/
%G ru
%F FPM_2023_24_4_a0
S. A. Abramov; A. A. Ryabenko; D. E. Khmelnov. Extendable essay as a~web resource for supporting lecture courses. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 3-9. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a0/

[1] Abramov S. A., Lektsii o slozhnosti algoritmov, MTsNMO, M., 2020

[2] Abramov S. A., Bordachenkova E. A., Khmelnov D. E., “Rasshiryaemoe esse kak gipertekstovaya skhema informatsionnogo i uchebnogo materiala”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 495–501 | DOI | Zbl

[3] Abramov S. A., Ryabenko A. A., Khmelnov D. E., Kompyuternaya algebra operatornykh matrits, MAKS Press, M., 2024 (to appear)

[4] Bordachenkova E. A., Zubareva V. N., Panferov A. A., “Rasshiryaemoe esse o sisteme kompyuternoi algebry Sage i redaktor dlya sozdaniya rasshiryaemykh zsse”, Programmirovanie, 2024, no. 2