Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2023_24_3_a7, author = {A. V. Mikhalev}, title = {Algebras with single defining relation}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {139--152}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a7/} }
A. V. Mikhalev. Algebras with single defining relation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 139-152. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a7/
[1] Agalakov S. A., “Algebra Li s odnim opredelyayuschim sootnosheniem ne obyazana byt finitno approksimiruemoi”, Matem. zametki, 51:4 (1992), 3–7 | MR | Zbl
[2] Artamonov V. A., Klimakov A. V., Mikhalev A. A., Mikhalev A. V., “Primitivnye i pochti primitivnye elementy shraierovykh mnogoobrazii”, Fundament. i prikl. matem., 21:2 (2016), 3–35 | MR
[3] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Avtomorfizmy svobodnykh algebr shraierovykh mnogoobrazii”, Sovr. probl. matem. i mekh., 4:3 (2009), 39–57
[4] Baranovich T. M., Burgin M. S., “Lineinye $\Omega$-algebry”, UMN., 30:4 (1975), 61–106 | MR | Zbl
[5] Bakhturin Yu. A., “Dva zamechaniya o mnogoobraziyakh algebr Li”, Matem. zametki, 1968, no. 4, 387–398 | Zbl
[6] Bakhturin Yu. A., “O tozhdestvakh v algebrakh Li. I, II”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 28:1 (1973), 12–18 ; 2, 30–37 | MR | Zbl | Zbl
[7] Burgin M. S., “Teorema o svobode v nekotorykh mnogoobraziyakh lineinye $\Omega$-algebr i $\Omega$-kolets”, UMN, 24:1 (1969), 27–38 ; УМН, 25:1 (1970), 248 | MR | Zbl | MR | Zbl
[8] Burgin M. S., “Shraierovy mnogoobraziyakh lineinykh $\Omega$-algebr”, Matem. sb., 93(135):4 (1974), 554–572
[9] Burgin M. S., Artamonov V. A., “Nekotorye svoistva podalgebr v mnogoobraziyakh lineinykh $\Omega$-algebr”, Matem. sb., 87:1 (1972), 67–82 | Zbl
[10] Gainov A. T., “Kommutativnye svobodnye i antikommutativnye svobodnye proizvedeniya algebr”, DAN SSSR, 133:6 (1960), 1275–1278 | Zbl
[11] Gainov A. T., “Kommutativnye svobodnye i antikommutativnye svobodnye proizvedeniya algebr”, Sib. matem. zhurn., 3:6 (1962), 805–833 | MR | Zbl
[12] Gerasimov V. N., “Distributivnye reshetki podprostranstv i problema ravenstva dlya algebr s odnim sootnosheniem”, Algebra i logika, 15:4 (1976), 384–435 | MR
[13] Guba V. S., “Assotsiativnye algebry s odnim sootnosheniem engeleva tipa”, Sib. matem. zhurn., 38:6 (1997), 1240–1250 | MR | Zbl
[14] Demisenov V. N., Kukin G. P., “O podalgebrakh lievoi algebry s odnim opredelyayuschim sootnosheniem”, Sib. matem. zhurn., 38:5 (1997), 1051–1057 | MR | Zbl
[15] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR
[16] Zhukov A. I., “Privedennye sistemy opredelyayuschikh sootnoshenii v neassotsiativnykh algebrakh”, Matem. sb., 27:2 (1950), 267–280 | Zbl
[17] Zaitsev M. V., “O shraierovykh mnogoobraziyakh algebr Li”, Matem. zametki, 28:1 (1980), 119–126 | MR | Zbl
[18] Zolotykh A. A., Mikhalev A. A., “Rang elementa svobodnoi $p$-superalgebry Li”, DAN SSSR, 334:6 (1994), 690–693 | Zbl
[19] Zolotykh A. A., Mikhalev A. A., “Algoritmy dopolneniya primitivnykh sistem elementov svobodnykh algebr Li do svobodnykh porozhdayuschikh mnozhestv”, Intellekt. sist., 1:1–4 (1996), 173–183
[20] Zolotykh A. A., Mikhalev A. A., “Kompleks algoritmov dlya vychislenii v superalgebrakh Li”, Programmirovanie, 1997, no. 1, 12–23 | Zbl
[21] Zolotykh A. A., Mikhalev A. A., Umirbaev U. U., “Primer nesvobodnoi algebry Li kogomologicheskoi razmernosti 1”, UMN, 49:1 (1994), 203–204 | MR | Zbl
[22] Korepanov A. I., “Svobodnye neassotsiativnye superkommutativnye algebry”, Fundament. i prikl. matem., 9:3 (2003), 103–109 | Zbl
[23] Kukin G. P., “Primitivnye elementy svobodnykh algebr Li”, Algebra i logika, 9:4 (1970), 458–472 | MR | Zbl
[24] Kurosh A. G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Matem. sb., 20:2 (1947), 239–262 | MR | Zbl
[25] Kurosh A. G., “Neassotsiativnye svobodnye summy algebr”, Matem. sb., 37:2 (1955), 251–264 | Zbl
[26] Kurosh A. G., “Svobodnye summy multioperatornykh algebr”, Sib. matem. zhurn., 1:1 (1960), 62–70 | Zbl
[27] Kurosh A. G., “Multioperatornye koltsa i algebry”, UMN, 24:1(145) (1969), 3–15 | MR | Zbl
[28] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980
[29] Mikhalev A. A., “Podalgebry svobodnykh tsvetnykh superalgebr Li”, Matem. zametki, 37:5 (1985), 653–661 | MR | Zbl
[30] Mikhalev A. A., “Svobodnye tsvetnye superalgebry Li”, DAN SSSR, 286:3 (1986), 551–554 | MR | Zbl
[31] Mikhalev A. A., “Podalgebry svobodnykh $p$-superalgebr Li”, Matem. zametki, 43:2 (1988), 178–191
[32] Mikhalev A. A., “Lemma o sliyanii i problema ravenstva dlya tsvetnykh superalgebr Li”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 5, 88–91 | Zbl
[33] Mikhalev A. A., “Tekhnika kompozitsii A. I. Shirshova v superalgebrakh Li (nekommutativnye bazisy Grebnera)”, Tr. seminara im. I. G. Petrovskogo, 18, 1995, 277–289
[34] Mikhalev A. A., Mikhalev A. V., Chepovskii A. A., “Primitivnye elementy svobodnykh kommutativnykh i antikommutativnykh neassotsiativnykh algebr”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 10:4 (2010), 62–81
[35] Mikhalev A. A., Mikhalev A. V., Chepovskii A. A., Shampaner K., “Primitivnye elementy svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. matem., 13:5 (2007), 171–192
[36] Romanovskii N. S., “Teorema o svobode dlya grupp s odnim opredelyayuschim sootnosheniem v mnogoobraziyakh razreshimykh i nilpotentnykh grupp dannykh stupenei”, Matem. sb., 89:1 (1972), 93–99
[37] Romanovskii N. S., “Svobodnye podgruppy v konechno-opredelennykh gruppakh”, Algebra i logika, 16:1 (1977), 88–97 | MR | Zbl
[38] Seregin A. V., “Nekotorye svoistva algebr Li kogomologicheskoi razmernosti odin”, Fundament. i prikl. matem., 4:2 (1998), 779–783 | MR
[39] Talapov V. V., “O razreshimykh algebrakh Li s odnim opredelyayuschim sootnosheniem”, Sib. matem. zhurn., 22:4 (1981), 176–181 | MR | Zbl
[40] Talapov V. V., “O polinilpotentnykh algebrakh Li, zadannykh odnim opredelyayuschim sootnosheniem”, Sib. matem. zhurn., 23:5 (1982), 192–204 | MR
[41] Umirbaev U. U., “O shraierovykh mnogoobraziyakh algebr”, Algebra i logika, 33:3 (1994), 317–340 | MR | Zbl
[42] Feldman G. L., “Kontsy algebr Li”, UMN, 38:1 (1983), 199–200 | MR | Zbl
[43] Kharlampovich O. G., “Uslovie Lindona dlya razreshimykh algebr Li”, Izv. vyssh. uchebn. zaved. Matematika, 1984, no. 9, 50–59 | Zbl
[44] Khashina Yu. A., “Shraierovy mnogoobraziya $n$-lievykh algebr”, Sib. matem. zhurn., 32:2 (1991), 197–199 | MR | Zbl
[45] Khashina Yu. A., “Shraierovy mnogoobraziya obobschennykh kolets”, Nauchn. tr. IvGU. Matematika, 1999, no. 2, 133–141
[46] Shampaner K., “Algoritmy realizatsii ranga i primitivnosti sistem elementov svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. matem., 6:4 (2000), 1229–1238 | MR | Zbl
[47] Shirshov A. I., “Podalgebry svobodnykh lievykh algebr”, Matem. sb., 33:2 (1953), 441–452 | Zbl
[48] Shirshov A. I., “Podalgebry svobodnykh kommutativnykh i svobodnykh antikommutativnykh algebr”, Matem. sb., 1954, no. 1, 81–88 | Zbl
[49] Shirshov A. I., “Nekotorye algoritmicheskie voprosy dlya $\varepsilon$-algebr”, Sib. matem. zhurn., 3:1 (1962), 132–137 | Zbl
[50] Shirshov A. I., “Nekotorye algoritmicheskie problemy dlya algebr Li”, Sib. matem. zhurn., 3:2 (1962), 292–296 | Zbl
[51] Shtern A. S., “Svobodnye superalgebry Li”, Sib. matem. zhurn., 27:1 (1986), 170–174 | MR | Zbl
[52] Artamonov V. A., “Varieties of algebras”, Handbook of Algebra, v. 2, ed. M. Hazenwinkel, Elsevier, Amsterdam, 2000, 547–575 | MR
[53] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Combinatorial properties of free algebras of Schreier varieties”, Polynomial Identities and Combinatorial Methods, eds. A. Giambruno, A. Regev, M. Zaicev, Marcel Dekker, New York, 2003, 47–99 | MR | Zbl
[54] Aust C., “Primitive elements and one relation algebras”, Trans. Amer. Math. Soc., 193 (1974), 375–387 | DOI | MR | Zbl
[55] Bahturin Yu. A., Identical Relations in Lie Algebras, De Gruyter, 2021 | MR | Zbl
[56] Bahturin Yu. A., Mikhalev A. A., Petrogradsky V. M., Zaicev M. V., Infinite-Dimensional Lie Superalgebras, Walter de Gruyter, Berlin, 1992 | MR
[57] Bahturin Yu. A., Mikhalev A. A., Zaicev M. V., “Infinite-dimensional Lie superalgebras”, Handbook of Algebra, v. 2, ed. M. Hazenwinkel, Elsevier, Amsterdam, 2000, 579–614 | DOI | MR
[58] Bahturin Yu., Olshanskii A., “Large restricted Lie algebras”, J. Algebra, 310 (2007), 413–427 | DOI | MR | Zbl
[59] Bokut' L. A., Kukin G. P., Algorithmic and Combinatorial Algebra, Kluwer Academic, Dordrecht, 1994 | MR | Zbl
[60] Brunner A. M., “A group with an infinite number of Nielsen inequivalent one-relator presentations”, J. Algebra, 42 (1976), 81–84 | DOI | MR | Zbl
[61] Cherix P.-A., Schaeffer G., “An asymptotic Freiheitssatz for finitely generated groups”, Enseign. Math. (2), 44:1–2 (1998), 9–22 | MR | Zbl
[62] Chibrikov E., “On free Sabinin algebras”, Commun. Algebra, 39 (2011), 4014–4035 | DOI | MR | Zbl
[63] Cohn P. M., Free Rings and Their Relations, Academic Press, London, 1985 | MR | Zbl
[64] Dicks W., “On one-relator associative algebras”, J. London Math. Soc., 5 (1972), 249–252 | DOI | MR | Zbl
[65] Dicks W., “On the cohomology of one-relator associative algebras”, J. Algebra, 97 (1985), 79–100 | DOI | MR | Zbl
[66] Dotsenko V., Umirbaev U., “An effective criterion for Nielsen-Schreier varieties”, Int. Math. Res. Notices, 2023, no. 23, 20385–20432 | DOI | MR
[67] Drensky V., Yu J.-T., “Primitive elements of free metabelian algebras of rank two”, Int. J. Algebra Comp., 13:1 (2003), 17–33 | DOI | MR | Zbl
[68] Fine B., Rosenberger G., “The Freiheitssatz and its extensions”, The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry, and Special Functions, Conference on the Legacy of Wilhelm Magnus (May 1-3, 1992), Contemp. Math., 169, eds. W. Abikoff, J. S. Birman, K. Kuiken, Amer. Math. Soc., Providence, 1994, 213–252 | DOI | MR | Zbl
[69] Hedges M. C., “The Freiheitssatz for graded algebras”, J. London Math. Soc. (2), 35 (1987), 395–405 | DOI | MR | Zbl
[70] Kharchenko V. K., “Braided version of Shirshov-Witt theorem”, J. Algebra, 294:1 (2005), 196–225 | DOI | MR | Zbl
[71] Kharchenko V., Quantum Lie Theory. A Multilinear Approach, Lect. Notes Math., 2150, Springer, Berlin, 2015 | DOI | MR | Zbl
[72] Kharlampovich O. G., Sapir M. V., “Algorithmic problems in varieties”, Int. J. Algebra Comput., 5 (1995), 379–602 | DOI | MR | Zbl
[73] Kochloukova D. H., Martinez-Perez C., “Bass-Serre theory for Lie algebras: A homological approach”, J. Algebra, 585 (2021), 143–175 | DOI | MR | Zbl
[74] Kolesnikov P. S., Makar-Limanov L. G., Shestakov I. P., “The Freiheitssatz for generic Poisson algebras”, SIGMA, 10 (2014), 115 | MR | Zbl
[75] Kozybaev D., Makar-Limanov L., Umirbaev U., “The Freiheitssatz and the automorphisms of free right-symmetric algebras”, Asian-Eur. J. Math., 1:2 (2008), 243–254 | DOI | MR | Zbl
[76] Labute J. P., “Algèbres de Lie et pro-p-groupes definis par une seule relation”, Invent. Math., 4 (1967), 142–158 | DOI | MR | Zbl
[77] Labute J. P., “Free ideals of one-relator graded Lie algebras”, Trans. Amer. Math. Soc., 347:1 (1995), 175–188 | DOI | MR | Zbl
[78] Lewin J., “On Schreier varieties of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl
[79] Lewin J., “Free modules over free algebras and free group algebras: The Schreier technique”, Trans. Amer. Math. Soc., 145 (1969), 455–465 | DOI | MR | Zbl
[80] Lewin J., Lewin T., “On ideals of free associative algebras generated by a single element”, J. Algebra, 8:2 (1968), 248–255 | DOI | MR | Zbl
[81] Magnus W., “Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz)”, J. Reine Angew. Math., 163 (1930), 141–165 | DOI | MR
[82] Makar-Limanov L. G., “Algebraically closed skew fields”, J. Algebra, 93 (1985), 117–135 | DOI | MR | Zbl
[83] Makar-Limanov L., Umirbaev U., “The Freiheitssatz for Novikov algebras”, TWMS J. Pure Appl. Math., 2:2 (2011), 228–235 | MR | Zbl
[84] Makar-Limanov L., Umirbaev U., “The Freiheitssatz for Poisson algebras”, J. Algebra, 328 (2011), 495–503 | DOI | MR | Zbl
[85] McCool J., Pietrowski A., “On free products with amalgamation of two infinite cyclic groups”, J. Algebra, 18 (1971), 377–383 | DOI | MR | Zbl
[86] Mikhalev A. A., “The composition lemma for color Lie superalgebras and for Lie $p$-superalgebras”, Proc. of the Int. Conf. on Algebra Dedicated to the Memory of A. I. Malcev, v. 2, Contemp. Math., 131, eds. L. A. Bokut', A. I. Mal'cev, Amer. Math. Soc., Providence, 1992, 91–104 | DOI | MR
[87] Mikhalev A. A., “Combinatorial aspects of the theory of Lie superalgebras”, First Int. Tainan-Moscow Algebra Workshop, Walter de Gruyter, Berlin, 1996, 37–68 | DOI | MR
[88] Mikhalev A. A., “Primitive elements and automorphisms of free algebras of Schreier varieties”, J. Math. Sci., 102:6 (2000), 4627–4639 | DOI | MR | Zbl
[89] Mikhalev A. A., Shestakov I. P., “PBW-pairs of varieties of linear algebras”, Commun. Algebra, 42:2 (2014), 667–687 | DOI | MR | Zbl
[90] Mikhalev A. A., Shpilrain V., Umirbaev U. U., “On isomorphism of Lie algebras with one defining relation”, Int. J. Algebra Comput., 14:3 (2004), 389–393 | DOI | MR | Zbl
[91] Mikhalev A. A., Shpilrain V., Yu J.-T., Combinatorial Methods: Free Groups, Polynomials, and Free Algebras, Springer, New York, 2004 | MR | Zbl
[92] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Automorphic orbits in free non-associative algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR | Zbl
[93] Mikhalev A. A., Umirbaev U. U., Zolotykh A. A., “A Lie algebra with cohomological dimension one over a field of prime characteristic is not necessarily free”, First Int. Tainan-Moscow Algebra Workshop, Walter de Gruyter, Berlin, 1996, 257–264 | DOI | MR
[94] Mikhalev A. A., Zolotykh A. A., “Applications of Fox differential calculus to free Lie superalgebras”, Non-Associative Algebra and Its Applications, Kluwer Academic, Dordrecht, 1994, 285–290 | DOI | MR | Zbl
[95] Mikhalev A. A., Zolotykh A. A., “Rank and primitivity of elements of free color Lie ($p$-)super-algebras”, Internat. J. Algebra Comput., 4 (1994), 617–656 | DOI | MR
[96] Mikhalev A. A., Zolotykh A. A., Combinatorial Aspects of Lie Superalgebras, CRC Press, Boca Raton, 1995 | MR | Zbl
[97] Mikhalev A. A., Zolotykh A. A., “Algorithms for primitive elements of free Lie algebras and superalgebras”, Proc. ISSAC-96, ACM Press, New York, 1996, 161–169 | DOI | MR | Zbl
[98] Murasugi K., “The center of a group with single defining relation”, Math. Ann., 155 (1964), 246–251 | DOI | MR | Zbl
[99] Nielsen J., “Die Isomorphismengruppe der freien Gruppe”, Math. Ann., 91 (1924), 169–209 | DOI | MR
[100] Pérez-Izquierdo J. M., “Algebras, hyperalgebras, nonassociative bialgebras and loops”, Adv. Math., 208:2 (2007), 834–876 | DOI | MR | Zbl
[101] Rakviashvili G., “Combinatorial aspects of free associative algebras and cohomologies of Lie p-algebras with one defining relation”, J. Math. Sci., 160:6 (2009), 822–832 | DOI | MR | Zbl
[102] Rakviashvili G., “Primitive elements of free Lie p-algebras”, Bull. Georgian Nat. Acad. Sci., 8:2 (2014), 15–18 | MR | Zbl
[103] Reutenauer C., Free Lie Algebras, Clarendon Press, Oxford, 1993 | MR | Zbl
[104] Schreier O., “Die Untergruppen der freien Gruppen”, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 161–183 | DOI | MR
[105] Bokut L. A., Latyshev V., Shestakov I., Zelmanov E. (eds.), Selected Works of A. I. Shirshov, Birkhäuser, Basel, 2009 | MR | Zbl
[106] Shestakov I. P., Umirbaev U. U., “Free Akivis algebras, primitive elements, and hyperalgebras”, J. Algebra, 250 (2002), 533–548 | DOI | MR | Zbl
[107] Shpilrain V., Yu J.-T., “Factor algebras of free algebras: On a problem of G. Bergman”, Bull. London Math. Soc., 35 (2003), 706–710 | DOI | MR | Zbl
[108] Stallings J., “On torsion-free groups with infinitely many ends”, Ann. Math., 88 (1968), 312–334 | DOI | MR | Zbl
[109] Swan R. G., “Groups of cohomological dimension one”, J. Algebra, 12 (1969), 585–610 | DOI | MR | Zbl
[110] Umirbaev U. U., “Universal derivations and subalgebras of free algebras”, Algebra (Krasnoyarsk, 1993), Walter de Gruyter, Berlin, 1996, 255–271 | MR | Zbl
[111] Whitehead J. H. C., “On certain sets of elements in a free group”, Proc. London Math. Soc., 41 (1936), 48–56 | DOI | MR | Zbl
[112] Whitehead J. H. C., “On equivalent sets of elements in a free group”, Ann. Math., 37 (1936), 782–800 | DOI | MR | Zbl
[113] Witt E., “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64 (1956), 195–216 | DOI | MR | Zbl
[114] Zusmanovich P., “On Lie $p$-algebras of cohomological dimension one”, Indag. Math., 30:2 (2019), 288–299 | DOI | MR | Zbl