Topological Jacobson radicals. III
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 39-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents variants of the topological Jacobson radical of algebras in quasi-regular and modular versions of the definition, which use the ideas of the construction of the Brown–McCoy radical and the descriptions of the Jacobson radical of alternative algebras.
@article{FPM_2023_24_3_a3,
     author = {S. T. Glavatsky and A. Yu. Golubkov and A. V. Mikhalev},
     title = {Topological {Jacobson} radicals. {III}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--103},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a3/}
}
TY  - JOUR
AU  - S. T. Glavatsky
AU  - A. Yu. Golubkov
AU  - A. V. Mikhalev
TI  - Topological Jacobson radicals. III
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 39
EP  - 103
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a3/
LA  - ru
ID  - FPM_2023_24_3_a3
ER  - 
%0 Journal Article
%A S. T. Glavatsky
%A A. Yu. Golubkov
%A A. V. Mikhalev
%T Topological Jacobson radicals. III
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 39-103
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a3/
%G ru
%F FPM_2023_24_3_a3
S. T. Glavatsky; A. Yu. Golubkov; A. V. Mikhalev. Topological Jacobson radicals. III. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 39-103. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a3/

[1] Glavatskii C. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. I”, Fundament. i prikl. matem., 16:8 (2010), 49–68

[2] Glavatskii C. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. II”, Fundament. i prikl. matem., 17:1 (2012), 53–64 | MR | Zbl

[3] Golubkov A. Yu., “Nasledstvennost radikalov i idealy algebr, porozhdennye dostizhimymi i subinvariantnymi podalgebrami”, Fundament. i prikl. matem., 24:1 (2022), 141–163

[4] Golubkov A. Yu., Kvaziregulyarnye radikaly neassotsiativnykh algebr, V pechati

[5] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[6] Zhevlakov K. A., Shestakov I. P., “O lokalnoi konechnosti v smysle Shirshova”, Algebra i logika, 12:1 (1973), 41–73 | MR

[7] Skosyrskii V. G., “Pravoalternativnye algebry”, Algebra i logika, 23:2 (1984), 185–192 | MR | Zbl

[8] Amitsur A. S., “Algebras over infinite fields”, Proc. Amer. Math. Soc., 7:1 (1956), 35–48 | DOI | MR | Zbl

[9] Anquela J. A., Cortés T., Zelmanov E., “Local nilpotency of the McCrimmon radical of a Jordan system”, Tr. Matem. in-ta im. V. A. Steklova, 292, 2016, 7–15 | DOI | MR | Zbl

[10] Anzai H., “On compact topological rings”, Proc. Imp. Acad. Tokyo, 19 (1943), 613–615 | MR | Zbl

[11] Castellano I., An introduction to totally disconnected locally compact groups, Corpus ID: 221949985, 2020 | MR

[12] Hogben L., McCrimmon K., “Maximal modular inner ideals and the Jacobson radical of a Jordan algebra”, J. Algebra, 68 (1981), 155–169 | DOI | MR | Zbl

[13] Loos O., Jordan Pairs, Lect. Notes Math., 460, Springer, New York, 1975 | DOI | MR | Zbl

[14] McCrimmon K., “The radical of a Jordan algebra”, Proc. N. A. S., 62 (1969), 671–678 | DOI | MR | Zbl

[15] McCrimmon K., “A characterization of the Jacobson-Smiley radical”, J. Algebra, 18 (1971), 565–573 | DOI | MR | Zbl

[16] Meyberg K., Lectures on Algebras and Triple Systems, Univ. Virginia, 1972 | MR

[17] Rowen L. H., Polynomial Identities in Ring Theory, Pure Appl. Math., 84, Academic Press, London, 1980 | MR | Zbl

[18] Thedy A., “Radicals of right alternative and Jordan rings”, Commun. Algebra, 12:7 (1984), 857–887 | DOI | MR | Zbl

[19] Thill M., Introduction to Normed $*$-Algebras and Their Representations, 2020

[20] Weiss B., “Boundedness in topological rings”, Pacific J. Math., 1956, no. 1, 149–158 | DOI | MR | Zbl

[21] Wesolek P. R., An Introduction to Totally Disconnected Locally Compact Groups, 2018 | MR