Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2023_24_3_a3, author = {S. T. Glavatsky and A. Yu. Golubkov and A. V. Mikhalev}, title = {Topological {Jacobson} radicals. {III}}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {39--103}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a3/} }
TY - JOUR AU - S. T. Glavatsky AU - A. Yu. Golubkov AU - A. V. Mikhalev TI - Topological Jacobson radicals. III JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2023 SP - 39 EP - 103 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a3/ LA - ru ID - FPM_2023_24_3_a3 ER -
S. T. Glavatsky; A. Yu. Golubkov; A. V. Mikhalev. Topological Jacobson radicals. III. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 39-103. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a3/
[1] Glavatskii C. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. I”, Fundament. i prikl. matem., 16:8 (2010), 49–68
[2] Glavatskii C. T., Mikhalev A. V., Tenzina V. V., “Topologicheskii radikal Dzhekobsona kolets. II”, Fundament. i prikl. matem., 17:1 (2012), 53–64 | MR | Zbl
[3] Golubkov A. Yu., “Nasledstvennost radikalov i idealy algebr, porozhdennye dostizhimymi i subinvariantnymi podalgebrami”, Fundament. i prikl. matem., 24:1 (2022), 141–163
[4] Golubkov A. Yu., Kvaziregulyarnye radikaly neassotsiativnykh algebr, V pechati
[5] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR
[6] Zhevlakov K. A., Shestakov I. P., “O lokalnoi konechnosti v smysle Shirshova”, Algebra i logika, 12:1 (1973), 41–73 | MR
[7] Skosyrskii V. G., “Pravoalternativnye algebry”, Algebra i logika, 23:2 (1984), 185–192 | MR | Zbl
[8] Amitsur A. S., “Algebras over infinite fields”, Proc. Amer. Math. Soc., 7:1 (1956), 35–48 | DOI | MR | Zbl
[9] Anquela J. A., Cortés T., Zelmanov E., “Local nilpotency of the McCrimmon radical of a Jordan system”, Tr. Matem. in-ta im. V. A. Steklova, 292, 2016, 7–15 | DOI | MR | Zbl
[10] Anzai H., “On compact topological rings”, Proc. Imp. Acad. Tokyo, 19 (1943), 613–615 | MR | Zbl
[11] Castellano I., An introduction to totally disconnected locally compact groups, Corpus ID: 221949985, 2020 | MR
[12] Hogben L., McCrimmon K., “Maximal modular inner ideals and the Jacobson radical of a Jordan algebra”, J. Algebra, 68 (1981), 155–169 | DOI | MR | Zbl
[13] Loos O., Jordan Pairs, Lect. Notes Math., 460, Springer, New York, 1975 | DOI | MR | Zbl
[14] McCrimmon K., “The radical of a Jordan algebra”, Proc. N. A. S., 62 (1969), 671–678 | DOI | MR | Zbl
[15] McCrimmon K., “A characterization of the Jacobson-Smiley radical”, J. Algebra, 18 (1971), 565–573 | DOI | MR | Zbl
[16] Meyberg K., Lectures on Algebras and Triple Systems, Univ. Virginia, 1972 | MR
[17] Rowen L. H., Polynomial Identities in Ring Theory, Pure Appl. Math., 84, Academic Press, London, 1980 | MR | Zbl
[18] Thedy A., “Radicals of right alternative and Jordan rings”, Commun. Algebra, 12:7 (1984), 857–887 | DOI | MR | Zbl
[19] Thill M., Introduction to Normed $*$-Algebras and Their Representations, 2020
[20] Weiss B., “Boundedness in topological rings”, Pacific J. Math., 1956, no. 1, 149–158 | DOI | MR | Zbl
[21] Wesolek P. R., An Introduction to Totally Disconnected Locally Compact Groups, 2018 | MR