Elementary equivalence of stable linear groups over fields of characteristic~$2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a criterion of elementary equivalence of stable linear groups over fields of characteristic $2$.
@article{FPM_2023_24_3_a1,
     author = {E. I. Bunina and A. V. Mikhalev and I. O. Solovyev},
     title = {Elementary equivalence of stable linear groups over fields of characteristic~$2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a1/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - A. V. Mikhalev
AU  - I. O. Solovyev
TI  - Elementary equivalence of stable linear groups over fields of characteristic~$2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 11
EP  - 21
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a1/
LA  - ru
ID  - FPM_2023_24_3_a1
ER  - 
%0 Journal Article
%A E. I. Bunina
%A A. V. Mikhalev
%A I. O. Solovyev
%T Elementary equivalence of stable linear groups over fields of characteristic~$2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 11-21
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a1/
%G ru
%F FPM_2023_24_3_a1
E. I. Bunina; A. V. Mikhalev; I. O. Solovyev. Elementary equivalence of stable linear groups over fields of characteristic~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 11-21. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a1/

[1] Atkarskaya A. S., “Avtomorfizmy stabilnykh lineinykh grupp nad kommutativnymi lokalnymi koltsami s $1/2$”, Fundament. i prikl. matem., 17:7 (2012), 15–30

[2] Bragin V., Bunina E., “Elementarnaya ekvivalentnost lineinykh grupp nad koltsami s konechnym chislom tsentralnykh idempotentami i nad bulevymi koltsami”, Fundament. i prikl. matem., 18:1 (2013), 45–55

[3] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad koltsami i telami”, UMN, 53:2 (1998), 137–138 | DOI | MR | Zbl

[4] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad polyami”, Fundament. i prikl. matem., 4:4 (1998), 1265–1278 | MR | Zbl

[5] Bunina E. I., “Elementarnaya ekvivalentnost grupp Shevalle”, UMN, 56:1 (2001), 157–158 | DOI | MR | Zbl

[6] Bunina E. I., “Elementarnaya ekvivalentnost grupp Shevalle nad lokalnymi koltsami”, Matem. sb., 201:3 (2010), 3–20 | DOI | MR | Zbl

[7] Bunina E. I., “Izomorfizmy i elementarnaya ekvivalentnost grupp Shevalle nad kommutativnymi koltsami”, Matem. sb., 210:8 (2019), 3–28 | DOI | MR | Zbl

[8] Bunina E. I., Kaleeva G. A., “Universalnaya ekvivalentnost obschikh i spetsialnykh lineinykh grupp nad polyami”, Fundament. i prikl. matem., 21:3 (2016), 73–106 | MR

[9] Bunina E. I., Mikhalev A. V., “Elementarnaya ekvivalentnost kategorii modulei nad koltsami”, Fundament. i prikl. matem., 10:2 (2004), 51–134 | Zbl

[10] Bunina E. I., Mikhalev A. V., Pinus A. G., Elementarnaya i blizkie k nei logicheskie ekvivalentnosti klassicheskikh i universalnykh algebr, MTsNMO, M., 2015

[11] Bunina E. I., Mikhalev A. V., Roizner M. A., “Kriterii elementarnoi ekvivalentnosti grupp avtomorfizmov i kolets endomorfizmov abelevykh $p$-grupp”, Dokl. RAN, 457:1 (2014), 11–12 | DOI | Zbl

[12] Bunina E. I., Mikhalev A. V., Solovev I. O., “Elementarnaya ekvivalentnost stabilnykh lineinykh grupp nad lokalnymi kommutativnymi koltsami s $1/2$”, Fundament. i prikl. matem., 21:1 (2016), 65–78 | MR

[13] Golubchik I. Z., Mikhalev A. V., “Izomorfizmy obschei lineinoi gruppy nad assotsiativnymi koltsami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1983, no. 3, 61–72 | MR | Zbl

[14] Goncharov S. S., Schetnye bulevy algebry i razreshimost, Nauchnye knigi, Novosibirsk, 1996

[15] Maltsev A. I., “Ob izomorfnykh matrichnykh predstavleniyakh beskonechnykh grupp”, Matem. sb., 8(50) (1940), 405–422 | Zbl

[16] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132 | Zbl

[17] Beidar K. I., Mikhalev A. V., “On Mal'cev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131, no. 1, 1992, 29–35 | DOI | MR | Zbl

[18] Chang C., Keisler H., Model Theory, North-Holland, 1990 | MR | Zbl

[19] Golubchik I. Z., “Isomorphisms of the general linear group $\mathrm{GL}_n(R)$, $n \geq 4$, over an associative ring”, Contemp. Math., 131, no. 1, 1992, 123–137 | DOI | MR

[20] Hahn A. J., O'Meara O. T., The Classical Groups and K-Theory, Springer, Berlin, 1989 | MR | Zbl

[21] Keisler H. J., “Ultraproducts and elementary models”, Indag. Math., 23 (1961), 477–495 | DOI | MR

[22] Kharlampovich O., Myasnikov A., “Elementary theory of free non-Abelian groups”, J. Algebra, 302 (2006), 451–552 | DOI | MR | Zbl

[23] Sela Z., “Diophantine geometry over groups. VI. The elementary theory of a free group”, Geom. Funct. Anal., 16:3 (2016), 707–730 | MR

[24] Sela Z., “Diophantine geometry over groups and the elementary theory of free and hyperbolic groups”, Proc. of the Int. Congress of Mathematicians, v. II, Beijing, 2002, 87–92 | MR | Zbl

[25] Shelah S., “Every two elementarily equivalent models have isomorphic ultrapowers”, Israel J. Math., 10 (1971), 224–233 | DOI | MR | Zbl

[26] Stephenson W., “Lattice isomorphism between modules”, J. London Math. Soc., 1 (1969), 177–188 | DOI | MR

[27] Szmielew W., “Elementary properties of Abelian groups”, Fund. Math., 41 (1955), 203–271 | DOI | MR | Zbl

[28] Tolstykh V., “Elementary equivalence of infinite-dimensional classical groups”, Ann. Pure Appl. Logic, 2000, 103–156 | DOI | MR | Zbl