Interpolation pseudo-ordered algebras over partially ordered fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 181-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

Characteristics of partially pseudo-ordered ($K$-ordered) algebras over partially ordered fields are considered. Properties of the set $L(A)$ of all convex directed ideals in pseudo-ordered algebras over partially ordered fields are described. The convexity of ideals means the Abelian convexity, which is based on the definition of a convex subgroup for a partially ordered group. It is proved that if $A$ is an interpolation pseudo-ordered algebra over a partially ordered field, then, in the lattice $L(A)$, the union operation is completely distributive with respect to the intersection. Properties of the lattice $L(A)$ for pseudo-lattice pseudo-ordered algebras over partially ordered fields are investigated. The second and third theorems of algebra order isomorphisms for interpolation pseudo-ordered algebras over partially ordered fields are proved. Some theorems are proved for principal convex directed ideals of interpolation pseudo-ordered algebras over directed fields. The principal convex directed ideal $I_a$ of a partially pseudo-ordered algebra $A$ is the smallest convex directed ideal of the algebra $A$ that contains the element $a\in A$. The analog for the third theorem of algebra order isomorphisms for principal convex directed ideals is demonstrated for interpolation pseudo-ordered algebras over directed fields.
@article{FPM_2022_24_2_a3,
     author = {A. V. Mikhalev and E. E. Shirshova},
     title = {Interpolation pseudo-ordered algebras over partially ordered fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {181--196},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a3/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - E. E. Shirshova
TI  - Interpolation pseudo-ordered algebras over partially ordered fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 181
EP  - 196
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a3/
LA  - ru
ID  - FPM_2022_24_2_a3
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A E. E. Shirshova
%T Interpolation pseudo-ordered algebras over partially ordered fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 181-196
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a3/
%G ru
%F FPM_2022_24_2_a3
A. V. Mikhalev; E. E. Shirshova. Interpolation pseudo-ordered algebras over partially ordered fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 181-196. http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a3/

[1] Bibaeva V. N, Shirshova E. E., “O lineino $K$-uporyadochennykh koltsakh”, Fundament. i prikl. matem., 17:4 (2011/2012), 13–23

[2] Birkgof G., Teoriya reshetok, Nauka, M., 1984

[3] Kopytov V. M., “Uporyadochenie algebr Li”, Algebra i logika, 11:3 (1972), 295–325 | Zbl

[4] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984

[5] Kochetova Yu. V., Shirshova E. E., “O lineino uporyadochennykh lineinykh algebrakh”, Fundament. i prikl. matem., 15:1 (2009), 53–63

[6] Kochetova Yu. V., Shirshova E. E., “Pervichnyi radikal reshetochno $\mathcal K$-uporyadochennykh algebr”, Fundament. i prikl. matem., 18:1 (2013), 85–158

[7] Mikhalev A. V., Shirshova E. E., “Pervichnyi radikal napravlennykh psevdouporyadochennykh kolets”, Fundament. i prikl. matem., 22:4 (2019), 147–166

[8] Mikhalev A. V., Shirshova E. E., “Pervichnyi radikal napravlennykh psevdouporyadochennykh algebr nad napravlennymi polyami”, Fundament. i prikl. matem., 23:3 (2020), 215–230

[9] Mikhalev A. V., Shirshova E. E., “Proektivnaya geometriya nad chastichno uporyadochennymi telami”, Fundament. i prikl. matem., 23:2 (2020), 231–245 | MR

[10] Mikhalev A. V., Shirshova E. E., “Proektivnaya geometriya nad chastichno uporyadochennymi telami. II”, Chebyshevskii sb., 22:1 (2021), 213–224 | DOI | MR | Zbl

[11] Mikhalev A. V., Shirshova E. E., “Interpolyatsionnye psevdouporyadochennye koltsa”, Fundament. i prikl. matem., 24:1 (2022), 177–191

[12] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965

[13] Shirshova E. E., “O vypuklykh podgruppakh grupp s interpolyatsionnym usloviem”, Fundament. i prikl. matem., 17:7 (2011/2012), 187–199

[14] Shirshova E. E., “O svoistvakh interpolyatsionnykh grupp”, Matem. zametki, 93:2 (2013), 295–304 | DOI | MR | Zbl

[15] Shirshova E. E., “O chastichno $K$-uporyadochennykh koltsakh”, Fundament. i prikl. matem., 21:1 (2016), 225–239 | MR

[16] Shirshova E. E., “O chastichno uporyadochennykh algebrakh nad polyami”, Fundament. i prikl. matem., 21:4 (2016), 249–263

[17] Shirshova E. E., “On groups with the almost orthogonality condition”, Commun. Algebra, 28:10 (2000), 4803–4818 | DOI | Zbl