Real division algebras with a~nontrivial reflection
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 23-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we consider four-dimensional unital real division algebras $\mathcal A$ with $\operatorname{Aut}(\mathcal A)$ containing a nontrivial reflection $\varphi$ (i.e., an automorphism of order two). If such an algebra $\mathcal A$ is a $\mathbb C$-bimodule, then we describe its multiplication table and state division conditions in terms of certain polynomials. Finally, we suggest a new method (different from the duplication process) that can be used to construct families of four-dimensional division algebras $\mathcal A$ with $\mathfrak{Der} (\mathcal A) =\{0\}$, which are generally not third power-associative or quadratic. Under some restrictions on algebra coefficients, we have listed all possible types of their automorphism groups.
@article{FPM_2022_24_2_a1,
     author = {D. Gokal and E. Napedenina and M. Tvalavadze},
     title = {Real division algebras with a~nontrivial reflection},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--35},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a1/}
}
TY  - JOUR
AU  - D. Gokal
AU  - E. Napedenina
AU  - M. Tvalavadze
TI  - Real division algebras with a~nontrivial reflection
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 23
EP  - 35
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a1/
LA  - ru
ID  - FPM_2022_24_2_a1
ER  - 
%0 Journal Article
%A D. Gokal
%A E. Napedenina
%A M. Tvalavadze
%T Real division algebras with a~nontrivial reflection
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 23-35
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a1/
%G ru
%F FPM_2022_24_2_a1
D. Gokal; E. Napedenina; M. Tvalavadze. Real division algebras with a~nontrivial reflection. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 23-35. http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a1/

[1] Faiz U., Napedenina E., Rochdi A., Tvalavadze M., “Veschestvennye algebry s deleniem razmernosti 4”, Fundament. i prikl. matem., 23:4 (2021), 177–207

[2] Althoen S. C., Kugler L. D., When is $\mathbb R^2$ a division algebra ?, Amer. Math. Mon., 90 (1983), 625–635 | MR | Zbl

[3] Benkart G. M., Britten D. J., Osborn J. M., “Real flexible division algebras”, Can. J. Math., 34 (1982), 550–588 | DOI | Zbl

[4] Benkart G. M., Osborn J. M., “An investigation of real division algebras using derivations”, Pacific J. Math., 96 (1981), 265–300 | DOI | Zbl

[5] Benkart G. M., Osborn J. M., “The derivation algebra of a real division algebra”, Amer. J. Math., 103 (1981), 1135–1150 | DOI | Zbl

[6] Bott R., Milnor J., “On the parallelizability of the spheres”, Bull. Amer. Math. Soc., 64 (1958), 87–89 | DOI | Zbl

[7] Bruck R. H., “Some results in the theory of linear non-associative algebras”, Trans. Amer. Math. Soc., 56 (1944), 141–199 | DOI | Zbl

[8] Calderón A., Kaïdi A., Martín C., Morales A., Ramírez M., Rochdi A., “Finite-dimensional absolute valued algebras”, Israël J. Math., 184 (2011), 193–220 | DOI | Zbl

[9] Cuenca J. A., de los Santos Villodres R., Ka{\" i}di A., Rochdi A., “Real quadratic flexible division algebras”, Linear Algebra Appl., 290 (1999), 1–22 | DOI | Zbl

[10] Darpö E., “On the classification of the real flexible division algebras”, Colloq. Math., 105:1 (2006), 1–17 | DOI | MR | Zbl

[11] Darpö E., Rochdi A., “Classification of the four-dimensional power-commutative real division algebras”, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1207–1223 | DOI | MR | Zbl

[12] Diankha O., Traoré M., Ramírez M. I., Rochdi A., “Four-dimensional real third power associative division algebras”, Commun. Algebra, 44 (2016), 3397–3406 | DOI | MR | Zbl

[13] Dieterich E., “Classification, automorphism groups and categorical structure of the two-dimensional real division algebras”, J. Algebra Its Appl., 4 (2005), 517–538 | DOI | Zbl

[14] Hirzebruch F., Koecher M., Remmert R., Numbers, Grad. Texts Math., 123, Springer, New York, 1990 | Zbl

[15] Hopf H., “Ein topologischer Beitrag zur reellen Algebra”, Comment. Math. Helvet., 13 (1940), 219–239 | DOI

[16] Hübner M., Petersson H. P., “Two-dimensional real division algebras revisited”, Beitr. Algebra Geom., 45 (2004), 29–36 | Zbl

[17] Kervaire M., “Non-parallelizability of the $n$-sphere for $n>7$”, Proc. Natl. Acad. Sci. U.S.A., 44 (1958), 280–283 | DOI | Zbl

[18] Ramírez M. I., “On four-dimensional absolute-valued algebras”, Proc. of the Int. Conf. on Jordan Structures (Malaga, 1997), 1999, 169–173 | Zbl

[19] Rochdi A., “Eight-dimensional real absolute valued algebras with left unit whose automorphism group is trivial”, Int. J. Math. Math. Sci., 70 (2003), 4447–4454 | DOI | Zbl

[20] Rodríguez Palacios A., “Absolute valued algebras and absolute valuable Banach spaces”, Advanced Courses of Mathematical Analysis I, World Sci. Publ., Hackensack, NJ, 2004, 99–155 | Zbl

[21] Tvalavadze M., Motya N., Rochdi A., “Duplication methods for embeddings of real division algebras”, J. Algebra Its Appl., 20:8 (2020), 2250063 | DOI | MR