Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2022_24_2_a1, author = {D. Gokal and E. Napedenina and M. Tvalavadze}, title = {Real division algebras with a~nontrivial reflection}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {23--35}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a1/} }
TY - JOUR AU - D. Gokal AU - E. Napedenina AU - M. Tvalavadze TI - Real division algebras with a~nontrivial reflection JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2022 SP - 23 EP - 35 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a1/ LA - ru ID - FPM_2022_24_2_a1 ER -
D. Gokal; E. Napedenina; M. Tvalavadze. Real division algebras with a~nontrivial reflection. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 23-35. http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a1/
[1] Faiz U., Napedenina E., Rochdi A., Tvalavadze M., “Veschestvennye algebry s deleniem razmernosti 4”, Fundament. i prikl. matem., 23:4 (2021), 177–207
[2] Althoen S. C., Kugler L. D., When is $\mathbb R^2$ a division algebra ?, Amer. Math. Mon., 90 (1983), 625–635 | MR | Zbl
[3] Benkart G. M., Britten D. J., Osborn J. M., “Real flexible division algebras”, Can. J. Math., 34 (1982), 550–588 | DOI | Zbl
[4] Benkart G. M., Osborn J. M., “An investigation of real division algebras using derivations”, Pacific J. Math., 96 (1981), 265–300 | DOI | Zbl
[5] Benkart G. M., Osborn J. M., “The derivation algebra of a real division algebra”, Amer. J. Math., 103 (1981), 1135–1150 | DOI | Zbl
[6] Bott R., Milnor J., “On the parallelizability of the spheres”, Bull. Amer. Math. Soc., 64 (1958), 87–89 | DOI | Zbl
[7] Bruck R. H., “Some results in the theory of linear non-associative algebras”, Trans. Amer. Math. Soc., 56 (1944), 141–199 | DOI | Zbl
[8] Calderón A., Kaïdi A., Martín C., Morales A., Ramírez M., Rochdi A., “Finite-dimensional absolute valued algebras”, Israël J. Math., 184 (2011), 193–220 | DOI | Zbl
[9] Cuenca J. A., de los Santos Villodres R., Ka{\" i}di A., Rochdi A., “Real quadratic flexible division algebras”, Linear Algebra Appl., 290 (1999), 1–22 | DOI | Zbl
[10] Darpö E., “On the classification of the real flexible division algebras”, Colloq. Math., 105:1 (2006), 1–17 | DOI | MR | Zbl
[11] Darpö E., Rochdi A., “Classification of the four-dimensional power-commutative real division algebras”, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1207–1223 | DOI | MR | Zbl
[12] Diankha O., Traoré M., Ramírez M. I., Rochdi A., “Four-dimensional real third power associative division algebras”, Commun. Algebra, 44 (2016), 3397–3406 | DOI | MR | Zbl
[13] Dieterich E., “Classification, automorphism groups and categorical structure of the two-dimensional real division algebras”, J. Algebra Its Appl., 4 (2005), 517–538 | DOI | Zbl
[14] Hirzebruch F., Koecher M., Remmert R., Numbers, Grad. Texts Math., 123, Springer, New York, 1990 | Zbl
[15] Hopf H., “Ein topologischer Beitrag zur reellen Algebra”, Comment. Math. Helvet., 13 (1940), 219–239 | DOI
[16] Hübner M., Petersson H. P., “Two-dimensional real division algebras revisited”, Beitr. Algebra Geom., 45 (2004), 29–36 | Zbl
[17] Kervaire M., “Non-parallelizability of the $n$-sphere for $n>7$”, Proc. Natl. Acad. Sci. U.S.A., 44 (1958), 280–283 | DOI | Zbl
[18] Ramírez M. I., “On four-dimensional absolute-valued algebras”, Proc. of the Int. Conf. on Jordan Structures (Malaga, 1997), 1999, 169–173 | Zbl
[19] Rochdi A., “Eight-dimensional real absolute valued algebras with left unit whose automorphism group is trivial”, Int. J. Math. Math. Sci., 70 (2003), 4447–4454 | DOI | Zbl
[20] Rodríguez Palacios A., “Absolute valued algebras and absolute valuable Banach spaces”, Advanced Courses of Mathematical Analysis I, World Sci. Publ., Hackensack, NJ, 2004, 99–155 | Zbl
[21] Tvalavadze M., Motya N., Rochdi A., “Duplication methods for embeddings of real division algebras”, J. Algebra Its Appl., 20:8 (2020), 2250063 | DOI | MR