Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 193-208
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the $\mathbb{T}$-space structure of the relatively free Grassmann algebra $\mathbb{F}^{(3)}$ without unity over an infinite field of prime and zero characteristic. Our work is focused on $\mathbb{T}$-spaces $\mathbb{W}_n$ generated by all so-called $n$-words. A question about connections between $\mathbb{W}_r$ and $\mathbb{W}_n$ for different natural numbers $r$ and $n$ is investigated. The proved theorem on these connections allows us to construct the diagrams of inclusions, which, to some extent, clarify the structure of the algebra: the basic $\mathbb{T}$-spaces produce infinite strictly descending chains of inclusions in the algebra $\mathbb{F}^{(3)}$.
@article{FPM_2022_24_1_a6,
author = {L. M. Tsybulya},
title = {Basic $\mathbb{T}$-spaces in the relatively free {Grassmann} algebra without unity},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {193--208},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a6/}
}
TY - JOUR
AU - L. M. Tsybulya
TI - Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2022
SP - 193
EP - 208
VL - 24
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a6/
LA - ru
ID - FPM_2022_24_1_a6
ER -
L. M. Tsybulya. Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 193-208. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a6/