Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 193-208

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the $\mathbb{T}$-space structure of the relatively free Grassmann algebra $\mathbb{F}^{(3)}$ without unity over an infinite field of prime and zero characteristic. Our work is focused on $\mathbb{T}$-spaces $\mathbb{W}_n$ generated by all so-called $n$-words. A question about connections between $\mathbb{W}_r$ and $\mathbb{W}_n$ for different natural numbers $r$ and $n$ is investigated. The proved theorem on these connections allows us to construct the diagrams of inclusions, which, to some extent, clarify the structure of the algebra: the basic $\mathbb{T}$-spaces produce infinite strictly descending chains of inclusions in the algebra $\mathbb{F}^{(3)}$.
@article{FPM_2022_24_1_a6,
     author = {L. M. Tsybulya},
     title = {Basic $\mathbb{T}$-spaces in the relatively free {Grassmann} algebra without unity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--208},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a6/}
}
TY  - JOUR
AU  - L. M. Tsybulya
TI  - Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 193
EP  - 208
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a6/
LA  - ru
ID  - FPM_2022_24_1_a6
ER  - 
%0 Journal Article
%A L. M. Tsybulya
%T Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 193-208
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a6/
%G ru
%F FPM_2022_24_1_a6
L. M. Tsybulya. Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 193-208. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a6/