Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 141-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper collects in a unified form well-known versions of the Anderson–Divinsky–Sulinski lemma for algebras that are nearly associative, and gives a number of its analogues for Lie algebras.
@article{FPM_2022_24_1_a3,
     author = {A. Yu. Golubkov},
     title = {Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--163},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Golubkov
TI  - Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 141
EP  - 163
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a3/
LA  - ru
ID  - FPM_2022_24_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Golubkov
%T Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 141-163
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a3/
%G ru
%F FPM_2022_24_1_a3
A. Yu. Golubkov. Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 141-163. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a3/

[1] Andrunakievich V. A., Ryabukhin V. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[2] Beidar K. I., “Lemma Andrunakievicha i iordanovy algebry”, UMN, 45:4(274) (1990), 137–138 | MR | Zbl

[3] Golubkov A. Yu., “Konstruktsii spetsialnykh radikalov algebr”, Fundament. i prikl. matem., 20:1 (2015), 57–133

[4] Golubkov A. Yu., “Slabo razreshimyi radikal i lokalno silno algebraicheskie differentsirovaniya lokalno obobschenno spetsialnykh algebr Li”, Fundament. i prikl. matem., 23:2 (2020), 89–99 | MR

[5] Golubkov A. Yu., Lokalno konechnyi radikal algebraicheskikh algebr Maltseva, V pechati

[6] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[7] Zhevlakov K. A., Shestakov I. P., “O lokalnoi konechnosti v smysle Shirshova”, Algebra i logika, 12:1 (1973), 43–73 | MR

[8] Levich E. M., “O prostykh i strogo prostykh koltsakh”, Izv. AN Lat. SSR. Ser. fiz.-tekh. nauk, 1965, no. 6, 53–58

[9] Markovichev A. S., “Nasledstvennost radikalov kolets tipa $(\gamma, \delta)$”, Algebra i logika, 17:1 (1978), 33–55 | MR

[10] Nikitin A. A., “Nasledstvennost radikalov kolets”, Algebra i logika, 17:3 (1978), 303–315 | MR

[11] Parfenov V. A., “O slabo razreshimom radikale algebr Li”, Sib. matem. zhurn., 12:1 (1971), 171–176 | MR | Zbl

[12] Roomeldi R. E., “Nilpotentnost idealov v $(-1, 1)$-koltsakh s usloviem minimalnosti”, Algebra i logika, 12:3 (1973), 333–348 | MR

[13] Simonyan L. A., “O dvukh radikalakh algebr Li”, DAN SSSR, 157:2 (1964), 281–283 | Zbl

[14] Amayo R. K., Stewart I. N., Infinite Dimensional Lie Algebras, Noordhoof, Leyden, 1974 | MR | Zbl

[15] Hartley B., “Locally nilpotent ideals of a Lie algebra”, Proc. Cambridge Philos. Soc., 63:2 (1967), 257–272 | DOI | MR | Zbl

[16] Hentzel I. R., Slater M., “On the Andrunakievich lemma for alternative rings”, J. Algebra, 27 (1973), 243–256 | DOI | MR | Zbl

[17] Lewand R., “Hereditary radicals in Jordan rings”, Proc. Amer. Math. Soc., 33:2 (1972), 302–306 | DOI | MR | Zbl

[18] Stewart I. N., “The minimal condition for subideals of Lie algebras implies that every ascendant subalgebra is a subideal”, Hiroshima Math. J., 9:1 (1979), 35–36 | DOI | MR | Zbl

[19] Stewart I. N., “Structure theorems for a class of locally finite Lie algebras”, Proc. London Math. Soc., Ser. 3, 24:1 (1972), 79–100 | DOI | MR | Zbl

[20] Sulinski A., Anderson T., Divinsky N., “Lower radical properties for associative and alternative rings”, J. London Math. Soc., 41 (1966), 417–424 | DOI | MR | Zbl

[21] Tôgô S., Kawamoto N., “Ascendantly coalescent classes and radicals of Lie algebras”, Hiroshima Math. J., 2:2 (1972), 253–261 | MR | Zbl

[22] Widarma G., “Nondegenerate radicals of right alternative rings”, Acta Math. Hungarica, 10:1–2 (2003), 19–30 | DOI | MR