Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2022_24_1_a3, author = {A. Yu. Golubkov}, title = {Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {141--163}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a3/} }
TY - JOUR AU - A. Yu. Golubkov TI - Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2022 SP - 141 EP - 163 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a3/ LA - ru ID - FPM_2022_24_1_a3 ER -
A. Yu. Golubkov. Heredity of radicals and ideals of algebras generated by subideals and subinvariant subalgebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 141-163. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a3/
[1] Andrunakievich V. A., Ryabukhin V. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR
[2] Beidar K. I., “Lemma Andrunakievicha i iordanovy algebry”, UMN, 45:4(274) (1990), 137–138 | MR | Zbl
[3] Golubkov A. Yu., “Konstruktsii spetsialnykh radikalov algebr”, Fundament. i prikl. matem., 20:1 (2015), 57–133
[4] Golubkov A. Yu., “Slabo razreshimyi radikal i lokalno silno algebraicheskie differentsirovaniya lokalno obobschenno spetsialnykh algebr Li”, Fundament. i prikl. matem., 23:2 (2020), 89–99 | MR
[5] Golubkov A. Yu., Lokalno konechnyi radikal algebraicheskikh algebr Maltseva, V pechati
[6] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR
[7] Zhevlakov K. A., Shestakov I. P., “O lokalnoi konechnosti v smysle Shirshova”, Algebra i logika, 12:1 (1973), 43–73 | MR
[8] Levich E. M., “O prostykh i strogo prostykh koltsakh”, Izv. AN Lat. SSR. Ser. fiz.-tekh. nauk, 1965, no. 6, 53–58
[9] Markovichev A. S., “Nasledstvennost radikalov kolets tipa $(\gamma, \delta)$”, Algebra i logika, 17:1 (1978), 33–55 | MR
[10] Nikitin A. A., “Nasledstvennost radikalov kolets”, Algebra i logika, 17:3 (1978), 303–315 | MR
[11] Parfenov V. A., “O slabo razreshimom radikale algebr Li”, Sib. matem. zhurn., 12:1 (1971), 171–176 | MR | Zbl
[12] Roomeldi R. E., “Nilpotentnost idealov v $(-1, 1)$-koltsakh s usloviem minimalnosti”, Algebra i logika, 12:3 (1973), 333–348 | MR
[13] Simonyan L. A., “O dvukh radikalakh algebr Li”, DAN SSSR, 157:2 (1964), 281–283 | Zbl
[14] Amayo R. K., Stewart I. N., Infinite Dimensional Lie Algebras, Noordhoof, Leyden, 1974 | MR | Zbl
[15] Hartley B., “Locally nilpotent ideals of a Lie algebra”, Proc. Cambridge Philos. Soc., 63:2 (1967), 257–272 | DOI | MR | Zbl
[16] Hentzel I. R., Slater M., “On the Andrunakievich lemma for alternative rings”, J. Algebra, 27 (1973), 243–256 | DOI | MR | Zbl
[17] Lewand R., “Hereditary radicals in Jordan rings”, Proc. Amer. Math. Soc., 33:2 (1972), 302–306 | DOI | MR | Zbl
[18] Stewart I. N., “The minimal condition for subideals of Lie algebras implies that every ascendant subalgebra is a subideal”, Hiroshima Math. J., 9:1 (1979), 35–36 | DOI | MR | Zbl
[19] Stewart I. N., “Structure theorems for a class of locally finite Lie algebras”, Proc. London Math. Soc., Ser. 3, 24:1 (1972), 79–100 | DOI | MR | Zbl
[20] Sulinski A., Anderson T., Divinsky N., “Lower radical properties for associative and alternative rings”, J. London Math. Soc., 41 (1966), 417–424 | DOI | MR | Zbl
[21] Tôgô S., Kawamoto N., “Ascendantly coalescent classes and radicals of Lie algebras”, Hiroshima Math. J., 2:2 (1972), 253–261 | MR | Zbl
[22] Widarma G., “Nondegenerate radicals of right alternative rings”, Acta Math. Hungarica, 10:1–2 (2003), 19–30 | DOI | MR