Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2021_23_4_a9, author = {V. S. Sekovanov}, title = {On {Julia} set of the functions which have parabolic fixed points}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {163--176}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a9/} }
V. S. Sekovanov. On Julia set of the functions which have parabolic fixed points. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 163-176. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a9/
[1] Grinchenko V. T., Matsipura V. T., Snarskii A. A., Vvedenie v nelineinuyu dinamiku: Khaos i fraktaly, LKI, M., 2007
[2] Kronover R. M., Fraktaly i khaos v dinamicheskikh sistemakh, Postmarket, M., 2000
[3] Lyubich M. Yu., “Dinamika ratsionalnykh preobrazovanii. Topologicheskaya kartina”, UMN, 41:4(250) (1986), 35–95 | MR
[4] Milnor Dzh., Golomorfnaya dinamika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000
[5] Paitgen Kh.-O., Rikhter P. Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993
[6] Sekovanov V. S., Elementy teorii fraktalnykh mnozhestv, LIBERKOM, M., 2013
[7] Sekovanov V. S., “Gladkie mnozhestva Zhyulia”, Fundament. i prikl. matem., 21:4 (2016), 133–150 | MR
[8] Sekovanov V. S., “O nekotorykh diskretnykh nelineinykh dinamicheskikh sistemakh”, Fundament. i prikl. matem., 21:3 (2016), 185–199 | MR
[9] Sekovanov V. S., Chto takoe fraktalnaya geometriya?, Lenand, M., 2016
[10] Sekovanov V. S., Babenko A. S., Selezneva E. M., Smirnova A. O., “Vypolnenie mnogoetapnogo matematiko-informatsionnogo zadaniya «Diskretnye dinamicheskie sistemy» kak sredstvo formirovaniya kreativnosti studentov”, Vestn. Kostrom. gos. univ., 22:2 (2016), 213–217
[11] Sekovanov V. S., Ivkov V. A., Elementy teorii diskretnykh dinamicheskikh sistem, Lan, SPb., 2017
[12] Sekovanov V. S., Fateev A. S., Belousova N. V., “Razvitie gibkosti myshleniya studentov pri razrabotke algoritma postroeniya dereva Feigenbauma v razlichnykh sredakh”, Vestn. Kostrom. gos. univ., 22:1 (2016), 143–147
[13] Falconer K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990 | MR | Zbl