Complexity of the Lambek calculus with one division and a~negative-polarity modality for weakening
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 143-162
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a variant of the Lambek calculus allowing empty antecedents. This variant uses two connectives: the left division and a unary modality that occurs only with negative polarity and allows weakening in antecedents of sequents. We define the notion of a proof net for this calculus, which is similar to those for the ordinary Lambek calculus and multiplicative linear logic. We prove that a sequent is derivable in the calculus under consideration if and only if there exists a proof net for it. We present a polynomial-time algorithm for deciding whether an arbitrary given sequent is derivable in this calculus.
@article{FPM_2021_23_4_a8,
author = {A. E. Pentus and M. R. Pentus},
title = {Complexity of the {Lambek} calculus with one division and a~negative-polarity modality for weakening},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {143--162},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a8/}
}
TY - JOUR AU - A. E. Pentus AU - M. R. Pentus TI - Complexity of the Lambek calculus with one division and a~negative-polarity modality for weakening JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2021 SP - 143 EP - 162 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a8/ LA - ru ID - FPM_2021_23_4_a8 ER -
%0 Journal Article %A A. E. Pentus %A M. R. Pentus %T Complexity of the Lambek calculus with one division and a~negative-polarity modality for weakening %J Fundamentalʹnaâ i prikladnaâ matematika %D 2021 %P 143-162 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a8/ %G ru %F FPM_2021_23_4_a8
A. E. Pentus; M. R. Pentus. Complexity of the Lambek calculus with one division and a~negative-polarity modality for weakening. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 143-162. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a8/