On total and regular graphs of a~polynomial
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 113-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

A regular graph of the ring of $n\times n$ matrices over a field is a graph whose vertices are nonsingular matrices. Two different matrices are adjacent if their sum is singular. In 2009, S. Akbari, M. Jamaali, and S. Seed Fakhari found that the clique number of this graph is finite whenever the field is not of characteristic $2$. The same authors asked if the chromatic number of the graph is finite (for fields of characteristic $0$ this question is still open). In this paper, we introduce a concept of total and regular graph of a polynomial, generalizing the regular graph of a matrix ring. We investigate some properties of these graphs and their relationship with the above question. Several new open questions are also posed.
@article{FPM_2021_23_4_a7,
     author = {A. M. Maksaev and V. V. Promyslov},
     title = {On total and regular graphs of a~polynomial},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--142},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a7/}
}
TY  - JOUR
AU  - A. M. Maksaev
AU  - V. V. Promyslov
TI  - On total and regular graphs of a~polynomial
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2021
SP  - 113
EP  - 142
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a7/
LA  - ru
ID  - FPM_2021_23_4_a7
ER  - 
%0 Journal Article
%A A. M. Maksaev
%A V. V. Promyslov
%T On total and regular graphs of a~polynomial
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2021
%P 113-142
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a7/
%G ru
%F FPM_2021_23_4_a7
A. M. Maksaev; V. V. Promyslov. On total and regular graphs of a~polynomial. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 113-142. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a7/

[1] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[2] Shafarevich I. R., Osnovy algebraicheskoi geometrii, MTsNMO, M., 2007 | MR

[3] Akbari S., Aryapoor M., Jamaali M., “Chromatic number and clique number of subgraphs of regular graph of matrix algebras”, Linear Algebra Its Appl., 436 (2012), 2419–2424 | MR | Zbl

[4] Akbari S., Heydari F., “The regular graph of a noncommutative ring”, Bull. Austr. Math. Soc., 89:1 (2014), 132–140 | MR | Zbl

[5] Akbari S., Jamaali M., Seyed Fakhari S. A., “The clique numbers of regular graphs of matrix algebras are finite”, Linear Algebra Its Appl., 431 (2009), 1715–1718 | MR | Zbl

[6] Anderson D. F., Badawi A., “The total graph of a commutative ring”, J. Algebra, 320 (2008), 2706–2719 | MR | Zbl

[7] Bruijn N. G., Erdős P., “A colour problem for infinite graphs and a problem in the theory of relations”, Indag. Math., 13 (1951), 371–373 | MR | Zbl

[8] Cameron P., “Research problems from the BCC22”, Discrete Math., 311 (2011), 1074–1083 | MR | Zbl

[9] Harary F., Graph theory, Addison-Wesley, 1969 | MR | Zbl

[10] Tomon I., “On the chromatic number of regular graphs of matrix algebras”, Linear Algebra Its Appl., 475 (2015), 154–162 | MR | Zbl