Jordan–Kronecker invariants for Lie algebras of small dimensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 73-86
In this paper, Jordan–Kronecker invariants are calculated for all nilpotent $6$- and $7$-dimensional Lie algebras. We consider the Poisson bracket family, depending on the lambda parameter on a Lie coalgebra, i.e., on the linear space dual to a Lie algebra. For some space $\mathfrak{g}$ proposed in the paper, two skew-symmetric matrices are defined for all points $x$ on this linear space. To understand the behaviour of the matrix pencil $(A - \lambda B)(x)$, we consider Jordan–Kronecker invariants for this pencil and how they change with $x$ (the latter is done for $6$-dimensional Lie algebras).
@article{FPM_2021_23_4_a4,
author = {A. Yu. Groznova},
title = {Jordan{\textendash}Kronecker invariants for {Lie} algebras of small dimensions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {73--86},
year = {2021},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a4/}
}
A. Yu. Groznova. Jordan–Kronecker invariants for Lie algebras of small dimensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 73-86. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a4/
[1] Korotkevich A. A., “Integriruemye gamiltonovy sistemy na algebrakh Li maloi razmernosti”, Matem. sb., 200:12 (2009), 3–40 | MR | Zbl
[2] Bolsinov A. V., Zhang P., “Jordan–Kronecker invariants of finite-dimensional Lie algebras”, Transform. Groups, 21:1 (2016), 51–86 | MR | Zbl
[3] Gong M.-P., Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbb{R}$), UWSpace, 1998 http://hdl.handle.net/10012/1148 | MR