Jordan--Kronecker invariants for Lie algebras of small dimensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 73-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Jordan–Kronecker invariants are calculated for all nilpotent $6$- and $7$-dimensional Lie algebras. We consider the Poisson bracket family, depending on the lambda parameter on a Lie coalgebra, i.e., on the linear space dual to a Lie algebra. For some space $\mathfrak{g}$ proposed in the paper, two skew-symmetric matrices are defined for all points $x$ on this linear space. To understand the behaviour of the matrix pencil $(A - \lambda B)(x)$, we consider Jordan–Kronecker invariants for this pencil and how they change with $x$ (the latter is done for $6$-dimensional Lie algebras).
@article{FPM_2021_23_4_a4,
     author = {A. Yu. Groznova},
     title = {Jordan--Kronecker invariants for {Lie} algebras of small dimensions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--86},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a4/}
}
TY  - JOUR
AU  - A. Yu. Groznova
TI  - Jordan--Kronecker invariants for Lie algebras of small dimensions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2021
SP  - 73
EP  - 86
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a4/
LA  - ru
ID  - FPM_2021_23_4_a4
ER  - 
%0 Journal Article
%A A. Yu. Groznova
%T Jordan--Kronecker invariants for Lie algebras of small dimensions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2021
%P 73-86
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a4/
%G ru
%F FPM_2021_23_4_a4
A. Yu. Groznova. Jordan--Kronecker invariants for Lie algebras of small dimensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 73-86. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a4/

[1] Korotkevich A. A., “Integriruemye gamiltonovy sistemy na algebrakh Li maloi razmernosti”, Matem. sb., 200:12 (2009), 3–40 | MR | Zbl

[2] Bolsinov A. V., Zhang P., “Jordan–Kronecker invariants of finite-dimensional Lie algebras”, Transform. Groups, 21:1 (2016), 51–86 | MR | Zbl

[3] Gong M.-P., Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbb{R}$), UWSpace, 1998 http://hdl.handle.net/10012/1148 | MR