On the torsion in the general linear group and the diagonalization algorithm
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 55-71
Voir la notice de l'article provenant de la source Math-Net.Ru
This work describes periodic matrices in the general linear group over the real numbers field and over the maximal Abelian extension $\mathbb{Q}_{\mathrm{ab}}$ of the rational numbers field. It is shown that for the case of real numbers the general question is reduced to the $2\times2$ matrices. A simple periodicity criterion is provided for them. We demonstrate a geometric interpretation of the results. The main result is an algorithm that tests periodicity of a matrix and, if the matrix is periodic, finds its Jordan form.
@article{FPM_2021_23_4_a3,
author = {A. V. Grishin and L. M. Tsybulya},
title = {On the torsion in the general linear group and the diagonalization algorithm},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {55--71},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a3/}
}
TY - JOUR AU - A. V. Grishin AU - L. M. Tsybulya TI - On the torsion in the general linear group and the diagonalization algorithm JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2021 SP - 55 EP - 71 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a3/ LA - ru ID - FPM_2021_23_4_a3 ER -
A. V. Grishin; L. M. Tsybulya. On the torsion in the general linear group and the diagonalization algorithm. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 55-71. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a3/