On the torsion in the general linear group and the diagonalization algorithm
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 55-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work describes periodic matrices in the general linear group over the real numbers field and over the maximal Abelian extension $\mathbb{Q}_{\mathrm{ab}}$ of the rational numbers field. It is shown that for the case of real numbers the general question is reduced to the $2\times2$ matrices. A simple periodicity criterion is provided for them. We demonstrate a geometric interpretation of the results. The main result is an algorithm that tests periodicity of a matrix and, if the matrix is periodic, finds its Jordan form.
@article{FPM_2021_23_4_a3,
     author = {A. V. Grishin and L. M. Tsybulya},
     title = {On the torsion in the general linear group and the diagonalization algorithm},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {55--71},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a3/}
}
TY  - JOUR
AU  - A. V. Grishin
AU  - L. M. Tsybulya
TI  - On the torsion in the general linear group and the diagonalization algorithm
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2021
SP  - 55
EP  - 71
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a3/
LA  - ru
ID  - FPM_2021_23_4_a3
ER  - 
%0 Journal Article
%A A. V. Grishin
%A L. M. Tsybulya
%T On the torsion in the general linear group and the diagonalization algorithm
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2021
%P 55-71
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a3/
%G ru
%F FPM_2021_23_4_a3
A. V. Grishin; L. M. Tsybulya. On the torsion in the general linear group and the diagonalization algorithm. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 55-71. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a3/

[1] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1966 | MR

[2] Grishin A. V., “O periodicheskoi chasti gruppy nevyrozhdennykh $(2\times2)$-matrits s algebraicheskimi koeffitsientami”, Mezhdunarodnaya konferentsiya, posvyaschennaya 90-letiyu kafedry vysshei algebry mekhaniko-matematicheskogo fakulteta MGU, Tezisy dokladov (elektronnaya versiya), M., 2019, 26 | Zbl

[3] Ilin V. A., Kim G. D., Lineinaya algebra i analiticheskaya geometriya, Izd-vo Mosk. un-ta, M., 1998

[4] Fedotov S. N., “Affinnye algebraicheskie gruppy s periodicheskimi komponentami”, Matem. sb., 200:7 (2009), 145–160 | MR | Zbl

[5] Greenberg M. J., “An elementary proof of the Kronecker–Weber theorem”, Amer. Math. Monthly, 81:6 (1974), 601–607 | MR | Zbl