Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 39-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a linearly ordered commutative ring with $1/2$ generated by its invertible elements, $G_2(R)$ be the subsemigroup in $\mathrm{GL}_2(R)$ consisting of all matrices with nonnegative elements. In this paper, we describe endomorphisms of the given semigroup.
@article{FPM_2021_23_4_a2,
     author = {E. Bunina and K. Sosov},
     title = {Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/}
}
TY  - JOUR
AU  - E. Bunina
AU  - K. Sosov
TI  - Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2021
SP  - 39
EP  - 53
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/
LA  - ru
ID  - FPM_2021_23_4_a2
ER  - 
%0 Journal Article
%A E. Bunina
%A K. Sosov
%T Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2021
%P 39-53
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/
%G ru
%F FPM_2021_23_4_a2
E. Bunina; K. Sosov. Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 39-53. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/