Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 39-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a linearly ordered commutative ring with $1/2$ generated by its invertible elements, $G_2(R)$ be the subsemigroup in $\mathrm{GL}_2(R)$ consisting of all matrices with nonnegative elements. In this paper, we describe endomorphisms of the given semigroup.
@article{FPM_2021_23_4_a2,
     author = {E. Bunina and K. Sosov},
     title = {Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/}
}
TY  - JOUR
AU  - E. Bunina
AU  - K. Sosov
TI  - Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2021
SP  - 39
EP  - 53
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/
LA  - ru
ID  - FPM_2021_23_4_a2
ER  - 
%0 Journal Article
%A E. Bunina
%A K. Sosov
%T Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2021
%P 39-53
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/
%G ru
%F FPM_2021_23_4_a2
E. Bunina; K. Sosov. Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 39-53. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/

[1] Bunina E. I., “Avtomorfizmy polugruppy neotritsatelnykh obratimykh matrits poryadka dva nad chastichno uporyadochennymi kommutativnymi koltsami”, Matem. zametki, 91:1 (2011), 3–12 | MR

[2] Bunina E. I., Mikhalev A. V., “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami”, Fundament. i prikl. matem., 11:2 (2005), 3–23 | MR | Zbl

[3] Bunina E. I., Mikhalev A. V., “Elementarnaya ekvivalentnost polugruppy obratimykh matrits s neotritsatelnymi elementami”, Fundament. i prikl. matem., 12:2 (2006), 39–53 | MR

[4] Bunina E. I., Semenov P. P., “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami nad chastichno uporyadochennymi koltsami”, Fundament. i prikl. matem., 14:2 (2008), 69–100

[5] Bunina E. I., Semenov P. P., “Elementarnaya ekvivalentnost polugruppy obratimykh matrits s neotritsatelnymi elementami nad chastichno uporyadochennymi koltsami”, Fundament. i prikl. matem., 14:4 (2008), 75–85

[6] Mikhalev A. V., Shatalova M. A., “Avtomorfizmy i antiavtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami”, Matem. sb., 81:4 (1970), 600–609 | Zbl

[7] Nemiro V. V., “Endomorfizmy polugrupp obratimykh neotritsatelnykh matrits nad uporyadochennymi nekommutativnymi koltsami”, Fundament. i prikl. matem. (to appear)

[8] Semenov P. P., “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi tselymi elementami”, Matem. sb., 203:9 (2012), 117–132 | MR | Zbl

[9] Semenov P. P., “Endomorfizmy polugrupp obratimykh neotritsatelnykh matrits nad uporyadochennymi koltsami”, Fundament. i prikl. matem., 17:5 (2012), 165–178