Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 39-53
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a linearly ordered commutative ring with $1/2$ generated by its invertible elements, $G_2(R)$ be the subsemigroup in $\mathrm{GL}_2(R)$ consisting of all matrices with nonnegative elements. In this paper, we describe endomorphisms of the given semigroup.
@article{FPM_2021_23_4_a2,
author = {E. Bunina and K. Sosov},
title = {Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {39--53},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/}
}
TY - JOUR AU - E. Bunina AU - K. Sosov TI - Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2021 SP - 39 EP - 53 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/ LA - ru ID - FPM_2021_23_4_a2 ER -
%0 Journal Article %A E. Bunina %A K. Sosov %T Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings %J Fundamentalʹnaâ i prikladnaâ matematika %D 2021 %P 39-53 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/ %G ru %F FPM_2021_23_4_a2
E. Bunina; K. Sosov. Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 39-53. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a2/