Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 209-224
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the $\mathbb{T}$-space structure of the relatively free Grassmann algebra $\mathbb{F}^{(3)}$ without unity over an infinite field of prime and zero characteristic. Our work is focused on $\mathbb{T}$-spaces $\mathbb{W}_n$ generated by all $n$-words. A question about connections between $\mathbb{W}_r$ and $\mathbb{W}_n$ for different natural numbers $r$ and $n$ is investigated. The proved theorem on these connections allows us to construct the diagrams of inclusions that, to some extent, clarify the structure of the algebra: the basic $\mathbb{T}$-spaces produce infinite strictly descending chains of inclusions in the algebra $\mathbb{F}^{(3)}$.
@article{FPM_2021_23_4_a11,
author = {L. M. Tsybulya},
title = {Basic $\mathbb{T}$-spaces in the relatively free {Grassmann} algebra without unity},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {209--224},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a11/}
}
TY - JOUR
AU - L. M. Tsybulya
TI - Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2021
SP - 209
EP - 224
VL - 23
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a11/
LA - ru
ID - FPM_2021_23_4_a11
ER -
L. M. Tsybulya. Basic $\mathbb{T}$-spaces in the relatively free Grassmann algebra without unity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 209-224. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a11/