On Hopfianity and co-Hopfianity of acts over groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 131-139
A universal algebra is called Hopfian if any of its surjective endomorphisms is an automorphism, and co-Hopfian if injective endomorphisms are automorphisms. In this paper, necessary and sufficient conditions are found for Hopfianity and co-Hopfianity of unitary acts over groups. It is proved that a coproduct of finitely many acts (not necessarily unitary) over a group is Hopfian if and only if every factor is Hopfian.
@article{FPM_2020_23_3_a8,
author = {I. B. Kozhukhov and K. A. Kolesnikova},
title = {On {Hopfianity} and {co-Hopfianity} of acts over groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {131--139},
year = {2020},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/}
}
I. B. Kozhukhov; K. A. Kolesnikova. On Hopfianity and co-Hopfianity of acts over groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 131-139. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/
[1] Kartashov V. K., “Nezavisimye sistemy porozhdayuschikh i svoistvo Khopfa dlya unarnykh algebr”, Diskret. matem., 20:4 (2008), 79–84 | Zbl
[2] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR
[3] Maksimovskii M. Yu., “O bipoligonakh i multipoligonakh nad polugruppami”, Matem. zametki, 87:6 (2010), 855–866 | MR
[4] Kilp M., Knauer U., Mikhalev A. V., Monoids, acts and categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl