On Hopfianity and co-Hopfianity of acts over groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 131-139
Voir la notice de l'article provenant de la source Math-Net.Ru
A universal algebra is called Hopfian if any of its surjective endomorphisms is an automorphism, and co-Hopfian if injective endomorphisms are automorphisms. In this paper, necessary and sufficient conditions are found for Hopfianity and co-Hopfianity of unitary acts over groups. It is proved that a coproduct of finitely many acts (not necessarily unitary) over a group is Hopfian if and only if every factor is Hopfian.
@article{FPM_2020_23_3_a8,
author = {I. B. Kozhukhov and K. A. Kolesnikova},
title = {On {Hopfianity} and {co-Hopfianity} of acts over groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {131--139},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/}
}
TY - JOUR AU - I. B. Kozhukhov AU - K. A. Kolesnikova TI - On Hopfianity and co-Hopfianity of acts over groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 131 EP - 139 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/ LA - ru ID - FPM_2020_23_3_a8 ER -
I. B. Kozhukhov; K. A. Kolesnikova. On Hopfianity and co-Hopfianity of acts over groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 131-139. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/