On Hopfianity and co-Hopfianity of acts over groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 131-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

A universal algebra is called Hopfian if any of its surjective endomorphisms is an automorphism, and co-Hopfian if injective endomorphisms are automorphisms. In this paper, necessary and sufficient conditions are found for Hopfianity and co-Hopfianity of unitary acts over groups. It is proved that a coproduct of finitely many acts (not necessarily unitary) over a group is Hopfian if and only if every factor is Hopfian.
@article{FPM_2020_23_3_a8,
     author = {I. B. Kozhukhov and K. A. Kolesnikova},
     title = {On {Hopfianity} and {co-Hopfianity} of acts over groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - K. A. Kolesnikova
TI  - On Hopfianity and co-Hopfianity of acts over groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 131
EP  - 139
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/
LA  - ru
ID  - FPM_2020_23_3_a8
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A K. A. Kolesnikova
%T On Hopfianity and co-Hopfianity of acts over groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 131-139
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/
%G ru
%F FPM_2020_23_3_a8
I. B. Kozhukhov; K. A. Kolesnikova. On Hopfianity and co-Hopfianity of acts over groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 131-139. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a8/

[1] Kartashov V. K., “Nezavisimye sistemy porozhdayuschikh i svoistvo Khopfa dlya unarnykh algebr”, Diskret. matem., 20:4 (2008), 79–84 | Zbl

[2] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR

[3] Maksimovskii M. Yu., “O bipoligonakh i multipoligonakh nad polugruppami”, Matem. zametki, 87:6 (2010), 855–866 | MR

[4] Kilp M., Knauer U., Mikhalev A. V., Monoids, acts and categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl