Cayley--Dickson split-algebras: Doubly alternative zero divisors and relation graphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 95-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our paper is devoted to the investigations of doubly alternative zero divisors of the real Cayley–Dickson split-algebras. We describe their annihilators and orthogonalizers and also establish the relationship between centralizers and orthogonalizers for such elements. Then we obtain an analogue of the real Jordan normal form in the case of the split-octonions. Finally, we describe commutativity, orthogonality, and zero divisor graphs of the split-complex numbers, the split-quaternions, and the split-octonions in terms of their diameters and cliques.
@article{FPM_2020_23_3_a7,
     author = {A. E. Guterman and S. A. Zhilina},
     title = {Cayley--Dickson split-algebras: {Doubly} alternative zero divisors and relation graphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--129},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a7/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - S. A. Zhilina
TI  - Cayley--Dickson split-algebras: Doubly alternative zero divisors and relation graphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 95
EP  - 129
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a7/
LA  - ru
ID  - FPM_2020_23_3_a7
ER  - 
%0 Journal Article
%A A. E. Guterman
%A S. A. Zhilina
%T Cayley--Dickson split-algebras: Doubly alternative zero divisors and relation graphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 95-129
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a7/
%G ru
%F FPM_2020_23_3_a7
A. E. Guterman; S. A. Zhilina. Cayley--Dickson split-algebras: Doubly alternative zero divisors and relation graphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 95-129. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a7/

[1] Bakhadly B. R., Guterman A. E., Markova O. V., “Grafy, opredelennye ortogonalnostyu”, Zap. nauch. sem. POMI, 428, 2014, 49–80

[2] Guterman A. E., Zhilina S. A., “Grafy otnoshenii veschestvennykh algebr Keli–Diksona”, Zap. nauch. sem. POMI, 472, 2018, 44–75

[3] Akbari S., Bidkhori H., Mohammadian A., “Commuting graphs of matrix algebras”, Commun. Algebra, 36:11 (2008), 4020–4031 | MR | Zbl

[4] Akbari S., Ghandehari M., Hadian M., Mohammadian A., “On commuting graphs of semisimple rings”, Linear Algebra Appl., 390:1 (2004), 345–355 | MR | Zbl

[5] Akbari S., Mohammadian A., Radjavi H., Raja P., “On the diameters of commuting graphs”, Linear Algebra Appl., 418:1 (2006), 161–176 | MR | Zbl

[6] Anderson D. F., Livingston P. S., “The zero-divisor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434–447 | MR | Zbl

[7] Babai L., Seress Á., “On the diameter of permutation groups”, European J. Combin., 13:4 (1992), 231–243 | MR | Zbl

[8] Baez J. C., “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | MR | Zbl

[9] Bakhadly B. R., “Orthogonality graph of the algebra of upper triangular matrices”, Oper. Matrices, 11:2 (2017), 455–463 | MR | Zbl

[10] Beck I., “Coloring of commutative rings”, J. Algebra, 116:1 (1988), 208–226 | MR | Zbl

[11] Bentz L., Tray D., “Subalgebras of the split octonions”, Adv. Appl. Clifford Algebras, 28:2 (2018), 40 | MR | Zbl

[12] Biss D. K., Dugger D., Isaksen D. C., “Large annihilators in Cayley–Dickson algebras”, Commun. Algebra, 36:2 (2008), 632–664 | MR | Zbl

[13] Božić I., Petrović Z., “Zero-divisor graphs of matrices over commutative rings”, Commun. Algebra, 37:4 (2009), 1186–1192 | MR | Zbl

[14] Cawagas R. E., “On the structure and zero divisors of the Cayley–Dickson sedenion algebra”, Discus. Math., Gen. Algebra Appl., 24 (2004), 251–265 | MR | Zbl

[15] Dolinar G., Guterman A. E., Kuzma B., Oblak P., “Commuting graphs and extremal centralizers”, Ars Math. Contemp., 7:2 (2014), 453–459 | MR | Zbl

[16] Eakin P., Sathaye A., “On automorphisms and derivations of Cayley–Dickson algebras”, J. Algebra, 129:2 (1990), 263–278 | MR | Zbl

[17] Greub W., Linear Algebra, Springer, New York, 1975 | MR | Zbl

[18] Guterman A. E., Markova O. V., “Orthogonality graphs of matrices over skew fields”, J. Math. Sci., 232:6 (2018), 797–804 | MR | Zbl

[19] McCrimmon K., A Taste of Jordan Algebras, Springer, New York, 2004 | MR | Zbl

[20] Moreno G., “The zero divisors of the Cayley–Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex., 4:1 (1998), 13–28 | MR | Zbl

[21] Moreno G., “Alternative elements in the Cayley–Dickson algebras”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebański Hackensack, World Sci. Publ, 2006, 333–346 | MR | Zbl

[22] Moreno G., Constructing zero divisors in the higher dimensional Cayley–Dickson algebras, 2005, arXiv: math/0512517 [math.RA] | MR

[23] Redmond S. P., “The zero-divisor graph of a noncommutative ring”, Int. J. Commut. Rings, 1:4 (2002), 203–211 | MR

[24] Schafer R. D., “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | MR | Zbl

[25] Schafer R. D., An Introduction to Nonassociative Algebras, Academic Press, New York, 1966 | MR | Zbl