The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 83-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we consider asymptotic properties of dimensional functions related to relatively free algebras. A notion of the $\mathrm{T}$-space inclusion measure into a relatively free algebra is introduced. We calculate this measure for the center of the relatively free Lie-nilpotent algebra of index $5$ and for the $\mathrm{T}$-space of this algebra generated by the long commutator $[x_1, x_2, x_3, x_4]$. Both of these measures coincide being equal to $1/2$. This fact allows us to obtain an asymptotic description of the center. Also, a probability-theoretical view of the inclusion measure is proposed.
@article{FPM_2020_23_3_a6,
     author = {A. V. Grishin},
     title = {The asymptotic approach to the description of the center of a relatively free {Lie-nilpotent} algebra},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a6/}
}
TY  - JOUR
AU  - A. V. Grishin
TI  - The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 83
EP  - 94
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a6/
LA  - ru
ID  - FPM_2020_23_3_a6
ER  - 
%0 Journal Article
%A A. V. Grishin
%T The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 83-94
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a6/
%G ru
%F FPM_2020_23_3_a6
A. V. Grishin. The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 83-94. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a6/