The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 83-94
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we consider asymptotic properties of dimensional functions related to
relatively free algebras. A notion of the $\mathrm{T}$-space inclusion measure into a relatively free
algebra is introduced. We calculate this measure for the center of the relatively free Lie-nilpotent algebra of index $5$ and for the $\mathrm{T}$-space of this algebra generated by the long
commutator $[x_1, x_2, x_3, x_4]$. Both of these measures coincide being equal to $1/2$. This fact
allows us to obtain an asymptotic description of the center. Also, a probability-theoretical
view of the inclusion measure is proposed.
@article{FPM_2020_23_3_a6,
author = {A. V. Grishin},
title = {The asymptotic approach to the description of the center of a relatively free {Lie-nilpotent} algebra},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {83--94},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a6/}
}
TY - JOUR AU - A. V. Grishin TI - The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 83 EP - 94 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a6/ LA - ru ID - FPM_2020_23_3_a6 ER -
A. V. Grishin. The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 83-94. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a6/