A hundred from a bus ticket
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 37-47
We consider the comic task of obtaining the number $100$ from a six-digit bus ticket number by placing parentheses and symbols for arithmetic operations between some digits. The solution algorithm for a fixed number is reduced to enumerating all binary trees having exactly six terminal nodes with the signs of operations in internal nodes. For six-digit numbers that do not contain duplicate digits and the digit $0$, the problem has a solution for all numbers except the only number $746189$. It is impossible to obtain a hundred from this strange number $746189$.
@article{FPM_2020_23_3_a3,
author = {V. V. Borisenko and R. Rakhmatov},
title = {A~hundred from a~bus ticket},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {37--47},
year = {2020},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a3/}
}
V. V. Borisenko; R. Rakhmatov. A hundred from a bus ticket. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 37-47. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a3/
[1] Lando S. K., Lektsii o proizvodyaschikh funktsiyakh, MTsNMO, M., 2007
[2] Shen A., Programmirovanie. Teoremy i zadachi, MTsNMO, M., 2007
[3] Davis T., Catalan Numbers, 2006 http://www.geometer.org/mathcircles
[4] Črepinšek M., Mernik L., “An efficient representation for solving Catalan number related problems”, Int. J. Pure Appl. Math., 56:4 (2009), 589–604 | MR