The structure of Reed--Muller codes over a~nonprime field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 231-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that Reed–Muller codes over a prime field are radical powers of a corresponding group algebra. The case of a nonprime field is less studied in terms of equalities and inclusions between Reed–Muller codes and radical powers. In this paper, we prove that Reed–Muller codes in the case of a nonprime field of arbitrary characteristic are distinct from radical powers and provide necessary and sufficient conditions for inclusions between these codes and the powers of the radical.
@article{FPM_2020_23_3_a12,
     author = {I. N. Tumaikin},
     title = {The structure of {Reed--Muller} codes over a~nonprime field},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {231--258},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a12/}
}
TY  - JOUR
AU  - I. N. Tumaikin
TI  - The structure of Reed--Muller codes over a~nonprime field
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 231
EP  - 258
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a12/
LA  - ru
ID  - FPM_2020_23_3_a12
ER  - 
%0 Journal Article
%A I. N. Tumaikin
%T The structure of Reed--Muller codes over a~nonprime field
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 231-258
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a12/
%G ru
%F FPM_2020_23_3_a12
I. N. Tumaikin. The structure of Reed--Muller codes over a~nonprime field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 231-258. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a12/

[1] Berman S. D., “K teorii gruppovykh kodov”, Kibernetika, 3:1 (1967), 31–39 | Zbl

[2] Kouselo E., Gonsales S., Markov V. T., Martines K., Nechaev A. A., “Predstavleniya kodov Rida-Solomona i Rida-Mallera idealami”, Algebra i logika, 51:3 (2012), 297–320 | MR

[3] Tumaikin I. N., “Bazisnye kody Rida-Mallera kak gruppovye kody”, Fundament. i prikl. matem., 18:4 (2013), 137–154

[4] Charpin P., “Une généralisation de la construction de Berman des codes de Reed et Muller $p$-aires”, Commun. Algebra, 16:11 (1988), 2231–2246 | MR | Zbl

[5] Lidl R., Niederreiter H., Finite Fields, Encycl. Math. Its Appl., 20, Cambridge Univ. Press, Cambridge, 1997 | MR

[6] MacWilliams F. J., Sloane N. J., The Theory of Error-Correcting Codes, North-Holland Math. Lib., 16, Elsevier, 1988 | MR

[7] Moore E. H., “A two-fold generalization of Fermat's theorem”, Bull. Amer. Math. Soc., 2:7 (1896), 189–199 | MR | Zbl