The structure of Reed--Muller codes over a~nonprime field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 231-258
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that Reed–Muller codes over a prime field are radical powers of a corresponding group algebra. The case of a nonprime field is less studied in terms of equalities and inclusions between Reed–Muller codes and radical powers. In this paper, we prove that Reed–Muller codes in the case of a nonprime field of arbitrary characteristic are distinct from radical powers and provide necessary and sufficient conditions for inclusions between these codes and the powers of the radical.
@article{FPM_2020_23_3_a12,
author = {I. N. Tumaikin},
title = {The structure of {Reed--Muller} codes over a~nonprime field},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {231--258},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a12/}
}
I. N. Tumaikin. The structure of Reed--Muller codes over a~nonprime field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 231-258. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a12/