One-sided isotopes and homotopes of right-alternative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 201-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every $c$-homotope preserves identical equations for the four-dimensional Mikheev algebra. Moreover, all isomorphisms for the four-dimensional Mikheev algebra and its $c$-isotope are described. It is proved that every central $c$-isotope of the Hentzel algebra is isomorphic to the Hentzel algebra. One-sided isotopic pairs are described.
@article{FPM_2020_23_3_a10,
     author = {A. A. Krylov},
     title = {One-sided isotopes and homotopes of right-alternative algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a10/}
}
TY  - JOUR
AU  - A. A. Krylov
TI  - One-sided isotopes and homotopes of right-alternative algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 201
EP  - 213
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a10/
LA  - ru
ID  - FPM_2020_23_3_a10
ER  - 
%0 Journal Article
%A A. A. Krylov
%T One-sided isotopes and homotopes of right-alternative algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 201-213
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a10/
%G ru
%F FPM_2020_23_3_a10
A. A. Krylov. One-sided isotopes and homotopes of right-alternative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 201-213. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a10/

[1] Dedlovskaya M. E., “Gomotopy $(-1,1)$-algebr ot dvukh porozhdayuschikh”, Matem. zametki, 59:4 (1996), 551–557 | MR | Zbl

[2] Maltsev A. I., “Ob odnom predstavlenii neassotsiativnykh kolets”, UMN, 7:1 (1952), 181–185 | MR | Zbl

[3] Pchelintsev S. V., “O mnogoobrazii, porozhdennom svobodnoi algebroi $(-1,1)$ s dvumya porozhdayuschimi”, Sib. matem. zhurn., 22:3 (1981), 162–178 | MR | Zbl

[4] Pchelintsev S. V., “Pervichnye alternativnye algebry, blizkie k kommutativnym”, Izv. RAN. Ser. matem., 68:1 (2004), 183–206 | MR | Zbl

[5] Pchelintsev S. V., “Izotopy pervichnykh $(-1,1)$-algebr i iordanovykh algebr”, Algebra i logika, 49:3 (2010), 388–423 | MR | Zbl

[6] Pchelintsev S. V., “Izotopy alternativnogo monstra i algebry Skosyrskogo”, Sib. matem. zhurn., 57:4 (2016), 850–865 | MR | Zbl

[7] Filippov V. T., “O $\delta$-differentsirovaniyakh algebr Li”, Sib. matem. zhurn., 39:6 (1998), 1409–1422 | MR | Zbl

[8] Albert A. A., “Non-associative algebras”, Ann. Math., 43 (1942), 685–707 | MR | Zbl

[9] Bruck R. H., “Some results in the theory of linear non-associative algebras”, Trans. Amer. Math. Soc., 56 (1944), 141–199 | MR | Zbl

[10] Hentzel I. R., “Nil semi-simple $(-1,1)$-rings”, J. Algebra, 22:3 (1972), 442–450 | MR | Zbl

[11] Hentzel I. R., “The characterization of $(-1,1)$-rings”, J. Algebra, 30 (1974), 236–258 | MR | Zbl

[12] McCrimmon K., “Homotopes of alternative algebras”, Math. Ann., 191:4 (1971), 253–262 | MR | Zbl

[13] Schafer R. D., “Alternative algebras over an arbitrary fields”, Bull. Amer. Math. Soc., 49 (1943), 549–555 | MR | Zbl