On the semirings of skew polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 13-21
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Semirings of skew polynomials such as invariant, without nilpotent elements, Abelian, and Rickart without nilpotent elements are considered in this paper. Properties and characterizations of these semirings are obtained.
@article{FPM_2020_23_3_a1,
     author = {M. V. Babenko and V. V. Chermnykh},
     title = {On the semirings of skew polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {13--21},
     year = {2020},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/}
}
TY  - JOUR
AU  - M. V. Babenko
AU  - V. V. Chermnykh
TI  - On the semirings of skew polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 13
EP  - 21
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/
LA  - ru
ID  - FPM_2020_23_3_a1
ER  - 
%0 Journal Article
%A M. V. Babenko
%A V. V. Chermnykh
%T On the semirings of skew polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 13-21
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/
%G ru
%F FPM_2020_23_3_a1
M. V. Babenko; V. V. Chermnykh. On the semirings of skew polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 13-21. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/

[1] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[2] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. matem., 17:3 (2012), 111–227 | MR | Zbl