On the semirings of skew polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 13-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Semirings of skew polynomials such as invariant, without nilpotent elements, Abelian, and Rickart without nilpotent elements are considered in this paper. Properties and characterizations of these semirings are obtained.
@article{FPM_2020_23_3_a1,
     author = {M. V. Babenko and V. V. Chermnykh},
     title = {On the semirings of skew polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {13--21},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/}
}
TY  - JOUR
AU  - M. V. Babenko
AU  - V. V. Chermnykh
TI  - On the semirings of skew polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 13
EP  - 21
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/
LA  - ru
ID  - FPM_2020_23_3_a1
ER  - 
%0 Journal Article
%A M. V. Babenko
%A V. V. Chermnykh
%T On the semirings of skew polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 13-21
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/
%G ru
%F FPM_2020_23_3_a1
M. V. Babenko; V. V. Chermnykh. On the semirings of skew polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 13-21. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a1/

[1] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[2] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. matem., 17:3 (2012), 111–227 | MR | Zbl