On algebraic-geometric and universal theories of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 101-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is of an overview nature, accumulating results on algebraic geometry over Abelian groups and close to them model-theoretic results related to the description of principal universal classes and quasi-varieties.
@article{FPM_2020_23_2_a6,
     author = {E. Yu. Daniyarova and A. A. Mishchenko and V. N. Remeslennikov and A. V. Treier},
     title = {On algebraic-geometric and universal theories of {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--145},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - A. A. Mishchenko
AU  - V. N. Remeslennikov
AU  - A. V. Treier
TI  - On algebraic-geometric and universal theories of Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 101
EP  - 145
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/
LA  - ru
ID  - FPM_2020_23_2_a6
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A A. A. Mishchenko
%A V. N. Remeslennikov
%A A. V. Treier
%T On algebraic-geometric and universal theories of Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 101-145
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/
%G ru
%F FPM_2020_23_2_a6
E. Yu. Daniyarova; A. A. Mishchenko; V. N. Remeslennikov; A. V. Treier. On algebraic-geometric and universal theories of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 101-145. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/

[1] Vinogradov A. A., “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | Zbl

[2] Gorbunov V. A., Algebraicheskaya teoriya kvazimnogoobrazii, Nauchnaya kniga, Novosibirsk, 1999

[3] Daniyarova E. Yu., “Ekvatsionalnye ko-oblasti v klasse abelevykh grupp”, Vestn. Omskogo un-ta, 23:4 (2018), 25–29 | MR

[4] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., Algebraicheskaya geometriya nad algebraicheskimi sistemami, Izd-vo SO RAN, Novosibirsk, 2016

[5] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980

[6] Zarisckii O., Samyuel P., Kommutativnaya algebra, v. 1, Izd. inostr. lit., M., 1963

[7] Zarisckii O., Samyuel P., Kommutativnaya algebra, v. 2, Izd. inostr. lit., M., 1963

[8] Mischenko A. A., Remeslennikov V. N., Treier A. V., “Kanonicheskie i ekzistentsialnye gruppy v universalnykh klassakh abelevykh grupp”, Dokl. RAN, 467:3 (2016), 266–270 | MR

[9] Mischenko A. A., Remeslennikov V. N., Treier A. V., “Universalnye invarianty dlya klassov abelevykh grupp”, Algebra i logika, 56:2 (2017), 176–201 | MR

[10] Fedoseeva Yu. M., Algebraicheskaya geometriya nad abelevymi i nilpotentnymi gruppami, Dis. \ldots kand. fiz.-mat. nauk, 1998 | Zbl

[11] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[12] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[13] Fomin A. A., Abelevy gruppy bez krucheniya konechnogo ranga s tochnostyu do kvaziizomorfizma, Dis. \ldots dokt. fiz.-mat. nauk, M., 1992

[14] Baumslag G., Myasnikov A., Remeslennikov V., “Algebraic geometry over groups I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[15] Baumslag G., Myasnikov A., Remeslennikov V., “Discriminating and co-discriminating groups”, J. Group Theory, 3:4 (2000), 467–479 | DOI | MR | Zbl

[16] Beaumont R. A., Pierce R. S., Torsion Free Groups of Rank Two, Mem. Amer. Math. Soc., Amer. Math. Soc., Providence, 1961 | MR | Zbl

[17] Daniyarova E. Yu., Remeslennikov V. N., “Calculation of the coordinate group by a system of equations over an abelian group”, Dynamics of Systems, Mechanisms and Machines, Dynamics (Omsk, 2018), IEEE, 2018, 1–6

[18] Eisenbud D., Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts Math., 150, Springer, Berlin, 1995 | DOI | MR

[19] Eklof P. C., “Some model theory of abelian groups”, J. Symbolic Logic, 37:2 (1972), 335–342 | DOI | MR | Zbl

[20] Hodges W., Model Theory, Cambridge Univ. Press, 1993 | MR | Zbl

[21] Jónsson B., “On direct decomposition of torsion free Abelian groups”, Math. Scand., 7 (1959), 361–371 | DOI | MR

[22] Kharlampovich O., Myasnikov A., “Irreducible affine varieties over free group I. Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl

[23] Kharlampovich O., Myasnikov A., “Irreducible affine varieties over free group II. Systems in triangular quasi-quadratic form and description of residually free groups”, J. Algebra, 200:2 (1998), 517–570 | DOI | MR | Zbl

[24] Lyndon R. C., “Groups with parametric exponents”, Trans. Amer. Math. Soc., 96 (1960), 518–533 | DOI | MR | Zbl

[25] Myasnikov A., Remeslennikov V., “Exponential groups 2. Extension of centralizers and tensor completion of CSA-groups”, Int. J. Algebra Comput., 6:6 (1996), 687–711 | DOI | MR | Zbl

[26] Myasnikov A., Remeslennikov V., “Algebraic geometry over groups II: Logical foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[27] Plotkin B. I., Seven lectures on the universal algebraic geometry, 2002, arXiv: math/0204245 | MR

[28] Plotkin B., “Algebras with the same (algebraic) geometry”, Proc. Steklov Inst. Math., 242 (2003), 165–196 | MR | Zbl

[29] Szmielew W., “Elementary properties of Abelian groups”, Fund. Math., 41 (1955), 203–271 | DOI | MR | Zbl