On algebraic-geometric and universal theories of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 101-145

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is of an overview nature, accumulating results on algebraic geometry over Abelian groups and close to them model-theoretic results related to the description of principal universal classes and quasi-varieties.
@article{FPM_2020_23_2_a6,
     author = {E. Yu. Daniyarova and A. A. Mishchenko and V. N. Remeslennikov and A. V. Treier},
     title = {On algebraic-geometric and universal theories of {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--145},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - A. A. Mishchenko
AU  - V. N. Remeslennikov
AU  - A. V. Treier
TI  - On algebraic-geometric and universal theories of Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 101
EP  - 145
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/
LA  - ru
ID  - FPM_2020_23_2_a6
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A A. A. Mishchenko
%A V. N. Remeslennikov
%A A. V. Treier
%T On algebraic-geometric and universal theories of Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 101-145
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/
%G ru
%F FPM_2020_23_2_a6
E. Yu. Daniyarova; A. A. Mishchenko; V. N. Remeslennikov; A. V. Treier. On algebraic-geometric and universal theories of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 101-145. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/