On algebraic-geometric and universal theories of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 101-145
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is of an overview nature, accumulating results on algebraic geometry over Abelian groups and close to them model-theoretic results related to the description of principal universal classes and quasi-varieties.
@article{FPM_2020_23_2_a6,
author = {E. Yu. Daniyarova and A. A. Mishchenko and V. N. Remeslennikov and A. V. Treier},
title = {On algebraic-geometric and universal theories of {Abelian} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {101--145},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/}
}
TY - JOUR AU - E. Yu. Daniyarova AU - A. A. Mishchenko AU - V. N. Remeslennikov AU - A. V. Treier TI - On algebraic-geometric and universal theories of Abelian groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 101 EP - 145 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/ LA - ru ID - FPM_2020_23_2_a6 ER -
%0 Journal Article %A E. Yu. Daniyarova %A A. A. Mishchenko %A V. N. Remeslennikov %A A. V. Treier %T On algebraic-geometric and universal theories of Abelian groups %J Fundamentalʹnaâ i prikladnaâ matematika %D 2020 %P 101-145 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/ %G ru %F FPM_2020_23_2_a6
E. Yu. Daniyarova; A. A. Mishchenko; V. N. Remeslennikov; A. V. Treier. On algebraic-geometric and universal theories of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 101-145. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a6/